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Abstract

This thesis explores Schur’s work from 1929, in which he proves a theorem
on prime numbers and two other theorems on irreducibility. In particular,
it follows from Schur’s work that Hermite polynomials are irreducible. This
thesis focuses on the algebraic and arithmetical tools Schur used, introducing
algebraic number theory and the distribution of prime numbers. Some results
on intervals containing primes are also given.
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0 Notation

N = {1, 2, 3, 4 . . .} = the set of natural numbers.
Z = {. . . ,−2,−1, 0, 1, 2, . . .} = the set of integers.
P = {2, 3, 5, 7, 11 . . .} = the set of prime numbers.
Q = the set of rational numbers.
R = the set of real numbers.

u2n = (2n− 1)!! = 1 · 3 · 5 · 7 · · · (2n− 1).
More information on this can be found in Section 6.2.

1 Introduction

1.1 Some Background

In 1929, Issai Schur wrote two papers, both of the name Einige Sätze über Primzahlen
mit Anwendugen auf Irreduzibilitätsfragen which roughly translates to Some theorems
on prime numbers with applications in proving irreducibility.
An important consequence of this work is that Hermite polynomials are irreducible.
This thesis transports the reader back to 1929 for an in depth look at the content
of these papers as well as an introduction to the theory upon which Schur’s proofs
depend.

1.2 Outline

In the first paper, Schur proves some results on the distribution of prime numbers, in
particular, Schur gives and proves an approximation for the prime counting function.
The prime counting function is defined in Section 2.1 and Schur’s approximation is
given in Section 2.2. Schur also proves that the interval x < p ≤ 5

4
x will always

contain a prime number p for x ≥ 29, the proof of which is given in Section 2.3.
Inspired by Schur’s work, the final section of this thesis investigates the distribution
of prime numbers from a modern point of view.
In the second paper, Schur proves the following theorem on sequences of consecutive
odd numbers and the prime factors of their terms.

Theorem 1.
For k ∈ N (k > 2) such that p = 2k + 1 ∈ P (p > 5), it is true that any sequence of
k consecutive odd numbers, for which all terms are greater than 2k + 1, will contain
at least one term with a prime factor greater than 2k + 1. For p = 3, the only
counterexamples are powers of 3α > 3 and for p = 5, the only counterexample is
25, 27.
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In Section 7, the proof of this theorem is given which not only uses the theory of the
distribution of prime numbers, developed in Section 2 but also an understanding of
how to solve the Pell equation x2 − Dy2 = 4 and Størmer’s theorem, on P -smooth
numbers. These are the subjects of Sections 3 and 4, respectively.
Schur suggests that if the above theorem is true for 2k + 1 ∈ P, then it is also true
for all 2k + 1 ∈ N. This is presented as a corollary in Section 7.2.

Corollary 1 (Corollary of Theorem 1).
For k ∈ N (k > 2), it is true that any sequence of k consecutive odd numbers, for
which all terms are greater than 2k + 1, will contain at least one term with a prime
factor greater than 2k+ 1. For k = 1, the only counterexamples are powers of 3α > 3
and for k = 2, the only counterexample is 25, 27.

Schur also proves the following two theorems on irreducibility, which follow from the
above corollary.

Theorem 2.
For n > 1, every polynomial of the form

f(x) = 1 + g1
x2

u2
+ g2

x4

u4
+ · · ·+ gn−1

x2n−2

u2n−2
± x2n

u2n

with gν ∈ Z, is irreducible over Q.

Theorem 3.
Every polynomial of the form

g(x) = 1 + g1
x2

u4
+ g2

x4

u6
+ · · ·+ gn−1

x2n−2

u2n
± x2n

u2n+2

with gν ∈ Z, is irreducible over Q, except for the case that 2n = 3r−1 for some r ≥ 2.
In this case, g(x) has just one factor x2 ± 3 and division by this factor results in an
irreducible polynomial over Q.

The proofs of these theorems are presented in Section 8. It is necessary to understand
some algebraic number theory before understanding these proofs, this is therefore the
subject of Section 5. Schur uses these two theorems to show that Hermite polynomials
are irreducible. This is presented as a corollary in Section 8.3.

Corollary 2 (Corollary of Theorems 2 and 3).
The mth Hermite polynomial

Hm(x) = (−1)me
x2

2 · d
me−

x2

2

dxm

is irreducible over Q for even m > 2 and irreducible after division by x for odd m.

Hermite polynomials are a classical sequence of orthogonal polynomials. More infor-
mation on Hermite polynomials and orthogonal polynomials in general can be found
in [15].
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1.3 How to Read This Thesis

If you are interested in understanding the proofs of the above theorems, you could
start with Sections 7 and 8, referring back to the introductory sections where neces-
sary. The proof has not only been translated into english but also treated in much
more detail, in order to make Schur’s work more accesible. Schur’s original proofs
can be found in [13]. For an introduction to the Pell equation and algebraic number
theory, you could start with Sections 3 and 5. More information on the history of
the Pell equation and its connection to algebraic number theory can be found in [4].
Finally, if you are interested in the distribution of prime numbers, you may like to
read Sections 2 and 9 for a comparison of results from 1929 and modern results.
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2 The Distribution of Prime Numbers

Schur makes use of several functions related to the distribution of prime numbers in
his work. In this section, these functions are introduced as well as the approximations
that Schur uses in his work. At the end of this section, the proof of the first Lemma
needed in order to prove Theorem 1 is also presented.

2.1 Prime Number Functions

Definition 1. The prime counting function π(x) is defined to be the number of prime
numbers p in the interval 2 ≤ p ≤ x. e.g. π(10) = 4.
Note that π(x) =

∑
p∈P

2≤p≤x

1.

Definition 2. The prime gaps function ∆p gives the gap between consecutive prime
numbers p and p′ (with p′ > p)

∆p = p′ − p.
e.g. ∆13 = 17− 13 = 4.

Definition 3. The function L(x) gives the length of the longest sequence of consec-
utive composite numbers up to and including x. e.g. L(10) = 3.

Remark 1. If M(x) = max{∆p : 2 ≤ p ≤ x}, then

L(p∗) = M(p∗)− 1.

for any p∗ ∈ P.

Definition 4. The first Chebyshev function ϑ(x) is defined to be ϑ(x) =
∑

2≤p≤x
log p.

e.g. ϑ(6) = log 2 + log 3 + log 5 = log 30.

Definition 5. The second Chebyshev function ψ(x) is defined to be ψ(x) =
∑

2≤pk≤x
log p.

e.g. ψ(6) = log 2 + log 3 + log 2 + log 5 = 2 log 2 + log 3 + log 5 = log 60.

Remark 2. Sometimes it is useful to define ψ(x) in one of the following alternative
(but equivalent) ways:

ψ(x) =
∑

2≤p≤x

[logp x] log p,

ψ(x) =
∞∑
n=1

ϑ(x
1
n ).

e.g. ψ(6) = ϑ(6) + ϑ(
√

6) + · · ·
= (log 2 + log 3 + log 5) + (log 2) + 0 + 0 + · · ·
= 2 log 2 + log 3 + log 5.
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2.2 Approximations

Schur proves and uses the following approximation in his work.

Approximation 1 (Schur [12]).

π(x) <
3

2

x

log x
,

for x ≥ 2.

Schur also uses approximations for the Chebyshev functions, given by Landau.

Approximation 2 (Landau [5]).

ϑ(x) <
6

5
ax+ 3 log2 x+ 8 log x+ 5,

ϑ(x) ≥ ax− 12

5
a
√
x− 3

2
log2 x− 13 log x− 15

for x ≥ 1, where a = log
(

2
1
2 ·3

1
3 ·5

1
5

30
1
30

)
= 0.92129 . . .

Approximation 3 (Landau [5]).

ψ(x) <
6

5
ax+ 3 log2 x+ 8 log x+ 5,

ψ(x) ≥ ax− 5 log x− 5

for x ≥ 1 where a is defined as in Approximation 2.

Schur used a table of prime numbers up to 300000, in order to give the following
approximations of ∆p for certain ranges of p

Approximation 4.

∆p < 1000 for p < 162754,

∆p < 100 for p < 4000,

∆p ≤ 14 for p < 400

and the following approximations of L(x) for certain values of x.

Approximation 5.

L(300000) < 2000,

L(100000) < 1000,

L(50000) < 100,

L(5000) < 47.

9



2.3 Intervals Containing Primes

Bertrand’s Postulate.
For x > 1 there exists at least one prime number p in the interval

x < p ≤ 2x.

Since Bertrand’s Postulate was proven, other intervals have been found for which
there must exist a prime number. Schur proves the following Lemma, which he then
uses for the proof of Theorem 1.

Lemma 1 (Schur [12]).
For x ≥ 29 there exists at least one prime number p such that

x < p ≤ 5

4
x.

Proof of Lemma 1.
Since y2 − 8y − 5 is positive for y > 10, it follows that

3y2 + 8y + 5 < 4y2

holds for y > 10.
Similarly,

3

2
y2 + 13y + 15 < 3y2

holds for y > 10.
Letting y = log x implies that

3 log2 x+ 8 log x+ 5 < 4 log2 x,

3

2
log2 x+ 13 log x+ 15 < 3 log2 x

hold for x > e10 and therefore from Approximation 2, it follows that

ϑ(x) <
6

5
ax+ 4 log2 x,

ϑ(x) > ax− 12

5
a
√
x− 3 log2 x

for x > e10.
Using this approximation, we find that

ϑ

(
5x

4

)
− ϑ(x) >

1

20
ax− 12

5
a

√
5x

4
− 3 log2 5x

4
− 4 log2 x,
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for x > e10.
Using the fact that

log

(
1 +

1

4

)
<

1

4
,

12

5

√
5

4
<

14

5

it follows that

ϑ

(
5x

4

)
− ϑ(x) >

1

20
g(x)

for x > e10, where

g(x) = ax− 56a
√
x− 140 log2 x− 30 log x− 4.

Note that
g(x)

x
is monotonically increasing for x > e2, then it follows that for x > e12

ϑ

(
5x

4

)
− ϑ(x) >

1

20
g(x)

>
1

x
g(x)

> 0

since g(e12) > 0.
The fact that ϑ

(
5x
4

)
− ϑ(x) > 0 for x > e12 means that there must exist a prime

number in the interval x < p ≤ 5
4
x and we have therefore proven the Lemma for

x > e12=162754.79. . . .

It is left to prove the Lemma for values of x in the interval 29 ≤ x ≤ 162754. For this
section, we make use of the function ∆p as defined in Definition 2. If we are able to
prove that

∆p <
p

4
(1)

for prime numbers in the interval 29 ≤ p < 162754, then the Lemma is proven. We
know from Approximation 4 that for p < 162754, ∆p < 1000 so if (1) were not true
for some p, then

1000 > ∆p ≥ p

4

and p < 4000 must be true. It follows that (1) is true for 4000 < p < 162754 and it
is left to investigate 29 ≤ p < 4000.
We also know from Approximation 4 that for p < 4000, ∆p < 100 so we know that
(1) holds for 400 < p < 4000 and it is left to investigate 29 ≤ p < 400.
Finally, from Approximation 4, we know that for p < 400, ∆p ≤ 14 so we know that
(1) holds for 56 < p < 400 and it is left to investigate 29 ≤ p < 56.
There are only seven prime numbers in this interval, so it is easy to verify that (1)
holds for each of them.
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3 The Pell Equation x2 −Dy2 = 4

In order to understand Schur’s proof of Lemma 2, it is necessary to be able to solve
the Pell Equation x2−Dy2 = 4. This section focuses on this Pell Equation, in partic-
ular, the properties of its solutions and how these can be used to generate all solutions.

We are looking for integer solutions to the Pell Equation x2 −Dy2 = 4, where D is
a non-square positive integer. We represent solutions in two different ways: either
(x, y) or

x+ y
√
D

2
.

The trivial solution is (x0, y0) = (2, 0). A solution for which x and y are both positive
is called a positive solution.

Pell Property 1.
Let (x1, y1) and (x2, y2) be two positive solutions of x2 −Dy2 = 4. Then,

x1 > x2 ⇐⇒ y1 > y2.

Proof of Pell Property 1.
In order for (x, y) to be a positive solution, x > 2, y > 0. The statement therefore
follows from the fact that

y =

√
x2 − 4

D

is strictly increasing for x > 2, y > 0.

It follows that finding the smallest positive solution is equivalent to minimising x or
minimising y.

Definition 6 (Fundamental Solution).
If (x1, y1) is the smallest positive solution of x2 −Dy2 = 4, then (x1, y1) is called the
fundamental solution of x2 −Dy2 = 4.

In order to find the fundamental solution, one could look for solutions for y =
1, 2, 3, . . .. The first solution one finds would be the fundamental solution. This
method by “brute force” suffices for understanding the proof of Lemma 2, since every
Pell equation used, has a small fundamental solution (1 ≤ y ≤ 4). However, in gen-
eral this method is poor and I encourage the reader to explore alternative methods.
For example, Lagrange developed a method for finding the fundamental solution of
x2 − Dy2 = z for some integer z (also known as the generalised Pell equation), a
description of this method can be found in [8].
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Pell Property 2.
The following expression

x∗ + y∗
√
D

2

is a solution of x2 +Dy2 = 4 if and only if

x∗ − y∗
√
D

2
,
−x∗ + y∗

√
D

2
,
−x∗ − y∗

√
D

2
.

are also solutions of x2 +Dy2 = 4.

Proof of Pell Property 2.
Follows trivially from the fact that (x∗)

2 = (−x∗)2 and (y∗)
2 = (−y∗)2.

It follows from Pell Property 2 that if we find all positive solutions, then we are able
to find all solutions.

Pell Property 3.
The product of any two solutions of x2 −Dy2 = 4 is also a solution of x2 −Dy2 = 4.

Proof of Pell Property 3.
Suppose (x1, y1) and (x2, y2) are arbitrary solutions of x2 −Dy2 = 4, then(

x1 + y1
√
D

2

)
·

(
x2 + y2

√
D

2

)
=
x1x2 + x1y2

√
D + x2y1

√
D + y1y2D

4
.

Therefore, it is left to show that

(x3, y3) =

(
x1x2 + y1y2D

2
,
x1y2 + x2y1

2

)
is a solution of x2 −Dy2 = 4, which can be easily verified:

x23 −Dy23 =
x21x

2
2 + 2x1x2y1y2D + y21y

2
2D

2

4
−Dx

2
1y

2
2 + 2x1x2y1y2 + x22y

2
1

4

=
x21x

2
2 + y21y

2
2D

2 −Dx21y22 −Dx22y21
4

=
(x21 −Dy21)(x22 −Dy22)

4
= 4.

It follows from this that if (x∗, y∗) is a solution of x2 −Dy2 = 4, then we are able to
generate infinitely many solutions.
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Pell Property 4.
For any solution (x∗, y∗) of x2 −Dy2 = 4, it follows that(

x∗ + y∗
√
D

2

)−n
=

(
x∗ − y∗

√
D

2

)n

.

Proof of Pell Property 4.
If x2∗ −Dy2∗ = 4, then (

x∗ + y∗
√
D

2

)−n
=

(
2

x∗ + y∗
√
D

)n
=

(
2(x∗ − y∗

√
D)

x2∗ − y2∗D

)n

=

(
x∗ − y∗

√
D

2

)n

.

Pell Property 5.
If (x1, y1) is the fundamental solution of x2−Dy2 = 4, then all positive solutions are
given by

xn + yn
√
D

2
=

(
x1 + y1

√
D

2

)n

n ∈ N (2)

Proof of Pell Property 5.
If (x1, y1) is the fundamental solution, then xn and yn are clearly positive and it
follows from Pell Property 3 that (xn, yn) is a positive solution of x2 −Dy2. It is left
to show that (2) gives all positive solutions.
Suppose x∗ + y∗

√
D is a positive solution of x2 −Dy2 = 4, that is not equal to some

power of the fundamental solution, then(
x1 + y1

√
D

2

)n

<

(
x∗ + y∗

√
D

2

)
<

(
x1 + y1

√
D

2

)n+1

for some n ∈ N.
If follows that,

1 <

(
x∗ + y∗

√
D

2

)
·

(
x1 + y1

√
D

2

)−n
<

(
x1 + y1

√
D

2

)
.

It follows then, from Pell Property 4 that,

1 <

(
x∗ + y∗

√
D

2

)
·

(
x1 − y1

√
D

2

)n

<

(
x1 + y1

√
D

2

)
.
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Since (x1,−y1) is a solution, by Pell Property 2, it follows from Pell Property 3 that
there exists a positive solution of x2 − Dy2 = 4 which is less than the fundamental
solution. This cannot be true and therefore there cannot be a positive solution which
is not equal to some power of the fundamental solution.

At this point, one may falsely conjecture that all generalised Pell equations can be
solved in this manner. Whilst this may not be true, there are several methods that
will solve any generalised Pell equation, see [1] for an example of such a method.

Pell Property 6.
If (xn, yn) is the smallest positive solution of x2 − Dy2 = 4 such that yn is divisible
by some given m, then for all solutions (xqn, yqn), q ∈ N, yqn will be divisible by yn
and therefore m. Furthermore, for all solutions (x, y) 6= (xqn, yqn), y is not divisible
by m.

Proof of Pell Property 6.
Using Pell Property 5 it is clear that yqn is divisible by yn ∀q ∈ N as,

xqn + yqn
√
D

2
=

(
x1 + y1

√
D

2

)nq

=

(
xn + yn

√
D

2

)q

,

and therefore if yn is divisible by m then yqn will be divisible by m ∀q ∈ N.
Suppose there exists a positive solution (xr, yr) of x2 − Dy2 = 4 where yr is also
divisible by m but r is not a multiple of n. Then, there must exist q∗ ∈ N such that
n ≤ q∗n < r < (q∗ + 1)n. However, this means that,(

x1 + y1
√
D

2

)r−q∗n

<

(
x1 + y1

√
D

2

)n

.

Let s = r − q∗n. Since 1 ≤ s < n and s ∈ N, it follows from Pell Property 5 that
(xs, ys) will be a positive solution of x2 −Dy2 = 4 smaller than (xn, yn).
From Pell Property 4 we know that(

x1 + y1
√
D

2

)s

=

(
xr + yr

√
D

2

)(
xq∗n − yq∗n

√
D

2

)
.

Since yr and yq∗n are divisible by m, ys is clearly also divisible by m which contradicts
the fact that (x, y) = (xn, yn) is the smallest positive solution such that y divides m.
As a result, no such yr can exist, i.e. only yqn will be divisible by m.
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4 Størmer’s Method

Definition 7. We define P to be a set of prime numbers

P = {p1, p2, . . .} ⊂ P.

Then, a positive integer is called P -smooth if and only if all of its prime factors are
contained in P .

Example 1. A {3}-smooth number is any number of the form 3α, for example 27 is
a 3-smooth number.

Example 2. A {2, 3, 5}-smooth number is any number of the form 2α3β5γ, for ex-
ample, 6, 15, 16 and 72 are all {2, 3, 5}-smooth numbers.

Note that P -smooth numbers don’t need to be divisible by every element of P .

Størmer’s Theorem (Størmer [14]). For any set P ⊂ P there are only finitely many
consecutive P -smooth pairs.

Example 3. The only consecutive pairs of {2, 3}-smooth numbers are

1, 2 2, 3 3, 4 8, 9

The proof of Størmer’s Theorem is often referred to as Størmer’s Method as it not
only proves the statement but also gives the P -smooth consecutive pairs for some
P . Schur proved the following Lemma in order to prove Theorem 1 but accredits his
method of proof to Størmer. As we will see, Størmer’s method is to solve a number
of Pell equations in order to find pairs of P -smooth numbers, Størmer’s original work
can be found in [14].

Lemma 2. [Schur, [13]] For all numbers of the form 3α5β there only exist the following
pairs a < b with the difference b− a ≤ 20;

1, 3 1, 5 3, 5 5, 9 25, 27 1, 9 1, 15 3, 9
3, 15 5, 15 5, 25 9, 15 9, 25 9, 27 15, 25 15, 27
25, 45 27, 45 75, 81 125, 135 225, 243

Proof of Lemma 2.
Suppose b− a = 2 or 4 and let D′ be the largest non-square divisor of ab such that

ab = D′y2

for some y ∈ N.

16



For b− a = 2,

D′y2 = ab

= a (a+ 2)

= a2 + 2a

and since

(2a+ 2)2 − 4
(
a2 + 2a

)
= 4a2 + 8a+ 4− 4a2 − 8a = 4.

it is true that,

x2 − 4D′y2 = 4 where x = 2a+ 2.

Similarly, it can shown that for b− a = 4

x2 −D′y2 = 4 where x = a+ 2

Recall that a and b are of the form 3α5β so since ab = D′y2, D′ and y must also be
of this form. In particular, as D′ must be non-square, the only possible values of D′

are 1, 3, 5 and 15.

Suppose D′ = 1, then in the case b − a = 4 we will have x2 − y2 = 4, this implies
x+ y = 4 and x− y = 1 as this is the only product of unequal integers which gives 4.
However, this would imply that 1 + 2y = 4 which is clearly false. A similar argument
can be used to show that D′ cannot be 1 in the case b − a = 2. It follows that the
only possible values of D′ are 3, 5 and 15.

Letting D = 4D′ where b− a = 2 and D = D′ where b− a = 4 reduces the problem
to finding solutions for the following Pell equations

x2 −Dy2 = 4 for D = 3, 5, 15, 12, 20, 60. (3)

For D = 3, the fundamental solution is (4, 2) and therefore by Pell Property 5, all
positive solutions of x2 − 3y2 = 4 are given by

xn + yn
√

3 = 2(2 +
√

3)n

for some n ∈ N. Note that this means that for all solutions of x2− 3y2 = 4, y will be
an even number and therefore not of the form 3α5β we are looking for. It is also true
for D = 15, 20 that for all solutions of x2 −Dy2 = 4, y must be even and therefore
not of the form we are looking for. So we must only consider the cases D = 5, 12, 60.

In the cases b − a = 2 or 4, one number must be of the form 3α and the other of
the form 5β since otherwise gcd(a, b) > 1 and b−a must be divisible by at least 3 or 5.
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For D = 5, the fundamental solution is (3, 1) and therefore by Pell Property 5, all
positive solutions of x2 − 5y2 = 4 are given by

xn + yn
√

5

2
=

(
3 +
√

5

2

)n

and therefore,

y1 = 1, y2 = 3, y3 = 8, y4 = 21, y5 = 55, . . .

Since y5 is the smallest y that is divisible by 5 we know by Pell Property 6 that
only y5q are divisible by 5 but these are also divisible by 11 and therefore not of the
form 3α5β, so it is not possible to find a solution (x, y) such that y is divisible by 5,
therefore

y = 3α.

It follows that

ab = D′y2 = 32α5

and a, b must be of one of the following forms

a = 32α, b = 5 or a = 5, b = 32α.

The only a, b pairs where b− a = 4 are therefore 1, 5 and 5, 9.

For D = 12 (D′ = 3), the fundamental solution is (4, 1) and therefore by Pell Property
5, all positive solutions of x2 − 12y2 = 4 are given by

xn + yn
√

12

2
=

(
4 +
√

12

2

)n

and therefore

y1 = 1, y2 = 4, y3 = 15, y4 = 56, y5 = 209,

y6 = 780, y7 = 2911, y8 = 10864, y9 = 40545 . . .

Since y9 is the smallest y that is divisible by 9 we know by Pell Property 6 that
only y9q are divisible by 9 but these are also divisible by 17 and therefore not of the
form 3α5β, so it is not possible to find a solution (x, y) such that y is divisible by 9,
therefore

y = 3 · 5β or y = 5β.

It follows that

ab = D′y2 = 33 · 52β or 3 · 52β
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and a, b must be of one of the following forms

a = 3, b = 52β or a = 27, b = 52β

or a = 52β, b = 3 or a = 52β, b = 27.

The only pairs where b− a = 2 are therefore 1, 3 and 25, 27.

Finally, for D = 60 (D′ = 15), the fundamental solution is (8, 1) and therefore by
Pell Property 5, all positive solutions of x2 − 60y2 = 4 are given by

xn + yn
√

60

2
=

(
8 +
√

60

2

)n

(4)

and therefore

y1 = 1, y2 = 8, y3 = 63 . . .

Since y3 is the smallest y that is divisible by 3 we know by Pell Property 6 that
only y3q are divisible by 3 but these are also divisible by 7 and therefore not of the
form 3α5β, so it is not possible to find a solution (x, y) such that y is divisible by 3,
therefore

y = 5β.

It follows that

ab = D′y2 = 3 · 52β+1

and a, b must be of one of the following forms

a = 3, b = 52β+1 or a = 52β+1, b = 3.

The only pair where b− a = 2 is therefore 3, 5.

Since b − a must be even, we have now shown that for b − a ≤ 4 there are only 5
possible pairs:

1, 3 1, 5 3, 5 5, 9 25, 27 (5)

It is left to find the pairs for which 4 < b − a ≤ 20. We first consider only a, b such
that gcd(a, b) = 1. i.e. a = 3α, b = 5β or a = 5β, b = 3α or a = 1, b = 3α5β. So b− a
cannot be a multiple of 3 or 5. i.e. b− a = 8, 14, 16.

Suppose that a = 1, b = 3α5β, then clearly 1, 9 and 1, 15 are the only pairs such that
4 < b− a ≤ 20.
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Let’s investigate the case that a = 3α, b = 5β or a = 5β, b = 3α.

First note that

3α ≡ ±1 mod 5 if α is even

3α ≡ +1 mod 4 if α is even

5β ≡ +1 mod 4 for all β.

If b− a = 14 then

3α − 5β = ±(b− a)

= ±14

≡ ∓1 mod 5

i.e. 3α ≡ ±1 mod 5, so α must be even.
But if α is even then,

14 = ±(b− a)

= 3α − 5β

≡ 0 mod 4.

i.e. 14 ≡ 0 mod 4, which is clearly not true, so b− a 6= 14. This means b− a = 8 or
16. In both these cases it must be true that 3α ≡ 5β mod 8.
Note that

3α ≡ 1 mod 8 if α is even

3α ≡ 3 mod 8 if α is odd

5β ≡ 1 mod 8 if β is even

5β ≡ 5 mod 8 if β is odd

So α and β must both be even. i.e. a and b are square numbers.
Note that for n ∈ N

(n+ 1)2 − n2 = 2n+ 1 ≥ 3

(n+ 2)2 − n2 = 4n+ 4 ≥ 8

(n+ 3)2 − n2 = 6n+ 9 ≥ 15

(n+ 4)2 − n2 = 8n+ 16 ≥ 24.

Since b − a = 8 or 16 can only be true when a = n2 and b = (n + 1)2, (n + 2)2 or
(n+ 3)2, we look for values of n that satisfy

2n+ 1 = 8 or 16 (6)

4n+ 4 = 8 or 16 (7)

6n+ 9 = 16. (8)
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Clearly, no values of n satisfy (6) or (8), but from (7) we find two possibilities (n = 1
or 3).

The only pairs of the form 3α5β such that gcd(a, b) = 1 and 4 < b− a ≤ 20 are 1, 9,
1, 15 and 9, 25. Adding these pairs to our list in (5) gives us all pairs of the form
3α5β such that gcd(a, b) = 1 and b− a ≤ 20.

1, 3 1, 5 1, 9 1, 15 3, 5 5, 9 9, 25 25, 27 (9)

Clearly, it is always possible to write b−a = (gcd(a, b))·(b∗−a∗) where gcd(a∗, b∗) = 1,
so multiplication of the pairs we have found so far by powers of 3 and 5 such that
b− a ≤ 20 still holds will give all possible pairs.
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5 Introduction to Algebraic Number Theory

5.1 Algebraic Number Fields and Rings of Integers

Definition 8 (Algebraic Number). An algebraic number α is any number (real or
complex) that is a root of some monic rational polynomial that is irreducible over Q.
We call this polynomial the minimal polynomial of α.

Definition 9 (Algebraic Integer). An algebraic integer is any number (real or com-
plex) that is a root of some monic integer polynomial that is irreducible over Q. We
call this polynomial the minimal polynomial of α.

Example 4. Every integer a is an algebraic integer with minimal polynomial x− a.

Example 5. We have already seen algebraic integers in Section 3. In the proof of
Lemma 2, we found that the fundamental solution of x2 − 5y2 = 4 is 3 +

√
5. This is

an algebraic integer with minimal polynomial x2 − 6x+ 4.

Remark 3. Clearly, the set of algebraic integers is a subset of the set of algebraic
numbers.

Definition 10 (Algebraic Number Field). Any field K formed by adjoining algebraic
numbers to Q is an algebraic number field. The degree of this field extension is finite.

Definition 11 (Simple Algebraic Number Field). Any field K formed by adjoining a
single algebraic number α to Q is a simple algebraic number field. The degree of this
field extension is the degree of the minimal polynomial of α.

Definition 12 (Ring of Integers). The set of algebraic integers in a given algebraic
number field K form a commutative ring with a multiplicative identity, which we call
the ring of integers and denote OK.

Example 6. The ring of integers OQ in the algebraic number field Q is Z.

Example 7. The ring of integers OQ(
√
5) in the algebraic number field Q(

√
5) is

Z
[
1+
√
5

2

]
, in particular, all solutions of the Pell Equation x2 − 5y2 = 4 are contained

in the ring of integers OQ(
√
5).

Definition 13 (Units). An element u of a ring of integers OK is called a unit if there
exists a multiplicative inverse u−1 of u in OK. In particular, the units of a particular
ring of integers OK form an abelian group under multiplication.

Example 8. The elements of the unit group of Z are {1,−1}.

Example 9. The elements of the unit group of OQ(
√
3) = Z

[√
3
]

are the solutions
x+
√
3y

2
of the Pell equation x2 − 3y2 = 4.

22



Definition 14 (Irreducible Elements). An element p of a ring of integers OK is
called an irreducible element if its only factorisation in OK is the trivial factorisation
p = u · u−1 · p, where u is some unit in OK.

Example 10. The irreducible elements of Z are the prime numbers P.

The Fundamental Theorem of Arithmetic states that every positive integer has a
unique prime factorisation. It follows therefore, that every element of Z can be
expressed as a unique product of prime numbers multiplied by 1 or −1. However,
it does not follow for all rings of integers, that every element can be expressed as a
unique product of irreducible elements multiplied by some unit. In order to define
some unique prime factorisation in rings of integers, we need to introduce the concept
of an ideal.

5.2 Introduction to Ideal Theory

Definition 15 (Ideal). Let R be a commutative ring with a multiplicative identity
and suppose I is a subring (not necessarily containing the multiplicative identity) of
R. Then I is an ideal if and only if

x+ y ∈ I ∀x, y ∈ I
rx ∈ I ∀x ∈ I, r ∈ R.

Definition 16 (Principal Ideal). A principal ideal is an ideal that is generated by just
one element of R. We denote the principal ideal generated by α as 〈α〉.

〈α〉 = {rα : r ∈ R}

Example 11. A principal ideal in Z is the set of all multiples of a particular integer.
For example, 〈5〉 is the set of all multiples of 5. It is easy to verify that 〈5〉 is an ideal
by observing that the sum of two multiples of 5 is also a multiple of 5 and the product
of a multiple of 5 with any other integer is still a multiple of 5.

Definition 17 (Prime Ideal). A prime ideal P is an ideal such that for all x, y ∈ R,

x · y ∈ P =⇒ x ∈ P or y ∈ P.

Example 12. The prime ideals of Z are exactly the principal ideals generated by
prime numbers. For example, if we factorise an element of 〈3〉, then at least one of
its factors must be a multiple of 3.

Definition 18 (Product of Ideals). If I and J are two ideals of R, then I · J is the
ideal generated by all i · j, where i ∈ I and j ∈ J .

Example 13. Clearly, 〈5〉 · 〈3〉 = 〈15〉 because every i ∈ 〈3〉 is of the form i = 3m
and every j ∈ 〈5〉 is of the form j = 5n, so every linear combination of i · j = 3m · 5n
will be of the form 15l and therefore exactly the ideal generated by 15.
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Definition 19 (Ideal Division). Let I and J be two ideals of R. We say that J divides
I if and only if there exists an ideal K of R such that I = J ·K.

Remark 4. We say “I divides α” when “I divides 〈α〉” is to be understood.

5.3 Properties of Ideals

Ideal Property 1.
For any two ideals I and J of a commutative ring R,

J divides I ⇐⇒ J contains I (I ⊂ J)

As a result, the words “divides” and “contains” are used interchangeably.

Ideal Property 2.
For any two principal ideals 〈α〉 and 〈β〉 of a commutative ring R,

α divides β ⇐⇒ 〈α〉 divides 〈β〉

Ideal Property 3 (Fundamental Theorem of Ideal Theory in Number Fields).
For every non-zero proper ideal I of some ring of integers OK, there exists a unique
factorisation of I into prime ideals Pi of OK. (I is non-zero iff I 6= 〈0〉 and proper
iff I 6= OK.)

Schur not only makes use of the above properties of ideals, but also the following
Lemma.

Lemma 3 (Perron, [10]). A prime number in an algebraic number field of degree n,
can have at most n factors.
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6 Some Basic Results

We are almost ready to start understanding Schur’s proofs of Theorems 1,2 and 3.
Schur makes regular use of various properties related to the Gauss bracket and double
factorials throughout his work. I have provided a more detailed explanation of these
statements in this section.

6.1 The Gauss Bracket

The Gauss bracket [·] : R→ Z is a function mapping real numbers x to the greatest
integer z ≤ x. In Schur’s proof of Theorem 1, he makes use of the following properties
of the Gauss Bracket:

Gauss Bracket Property 1.
[x] +

[
x+ 1

2

]
= [2x] ∀x ∈ R,

Gauss Bracket Property 2.[
x+ y + 1

2

]
−
[
x+ 1

2

]
−
[
y + 1

2

]
= −1, 0 or 1 ∀x, y ∈ R.

Gauss Bracket Property 3.
In the sequence of x consecutive odd numbers 1, 3, 5, . . . , 2x− 1, there are exactly[

2x

y

]
−
[
x

y

]
.

multiples of an odd number y.

Gauss Bracket Property 4.
In any sequence of x consecutive odd numbers, there are at most[

x+ y − 1

y

]
.

multiples of an odd number y.

Proof of Gauss Bracket Property 1.
Let x = a+ b where

a = max{z ∈ Z : z ≤ x}, b ∈ R.

Then clearly, [x] = a and 0 ≤ b < 1 so that,

[
x+ 1

2

]
=

{
a 0 ≤ b < 1

2

a+ 1 1
2
≤ b < 1.

Similarly,

2x = 2a+ 2b and 0 ≤ b < 1,
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so that,

[2x] =

{
2a 0 ≤ b < 1

2

2a+ 1 1
2
≤ b < 1.

From this, Gauss Bracket Property 1 follows easily.

Proof of Gauss Bracket Property 2. Let x = a+ b and y = c+ d where

a = max{z ∈ Z : z ≤ x}, b ∈ R,
c = max{z ∈ Z : z ≤ y}, d ∈ R.

Then,

[
x+ 1

2

]
=

{
a 0 ≤ b < 1

2

a+ 1 1
2
≤ b < 1,[

y + 1
2

]
=

{
c 0 ≤ d < 1

2

c+ 1 1
2
≤ d < 1,

[
x+ y + 1

2

]
=


a+ c 0 ≤ b+ d < 1

2

a+ c+ 1 1
2
≤ b+ d < 1

a+ c+ 1 1 ≤ b+ d < 3
2

a+ c+ 2 3
2
≤ b+ d < 2.

(10)

If we look at each of the cases in (10) then we see that

0 ≤ b+ d < 1
2

=⇒ 0 ≤ b, d < 1
2
,

1
2
≤ b+ d < 1 =⇒ 0 ≤ b, d < 1

2

or 0 ≤ b < 1
2

and 1
2
≤ d < 1

or 0 ≤ d < 1
2

and 1
2
≤ b < 1,

1 ≤ b+ d < 3
2

=⇒ 0 ≤ b < 1
2

and 1
2
≤ d < 1

or 0 ≤ d < 1
2

and 1
2
≤ b < 1

or 1
2
≤ b, d < 1,

3
2
≤ b+ d < 2 =⇒ 1

2
≤ b, d < 1.

This gives,

[
x+ 1

2

]
+
[
y + 1

2

]
=


a+ c 0 ≤ b+ d < 1

2

a+ c or a+ c+ 1 1
2
≤ b+ d < 1

a+ c+ 1 or a+ c+ 2 1 ≤ b+ d < 3
2

a+ c+ 2 3
2
≤ b+ d < 2.

(11)
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Subtracting (11) from (10) in each case, we get

[
x+ y + 1

2

]
−
[
x+ 1

2

]
−
[
y + 1

2

]
=


0 0 ≤ b+ d < 1

2

1 or 0 1
2
≤ b+ d < 1

0 or − 1 1 ≤ b+ d < 3
2

0 3
2
≤ b+ d < 2

and Gauss Bracket Property 2 follows.

The following trivial statements will be made use of in order to prove Gauss Bracket
Properties 3 and 4:

Statement 1.
Given a sequence of x terms

a1, a2, . . . ax,

and dividing the sequence into disjoint subsequences of y terms as follows

a1, . . . , ay, ay+1, . . . , a2y, . . . (12)

will result in [
x

y

]
disjoint subsequences of y terms

and 1 remaining subsequence of r terms,

where 0 ≤ r < y.

Statement 2. Every sequence of y consecutive numbers contains exactly one multiple
of y.

Statement 3. Every sequence of y consecutive odd numbers contains exactly one
multiple of y, where y is odd.

The Gauss Bracket Properties below follow from the above trivial statements:

Gauss Bracket Property 3a.

The number of multiples of y in the sequence 1, 2, 3, . . . , x is

[
x

y

]
∀x, y ∈ N.

Proof of Gauss Bracket Property 3a.
Dividing the sequence as in (12) gives disjoint subsequences of y numbers, ending
in a multiple of y. It follows from Statement 2 that the remaining sequence cannot
contain a multiple of y. The number of multiples of y in the whole sequence coincides
with the number of disjoint subsequences of y which can be found using Statement
1.
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Gauss Bracket Property 4a.
Given a sequence of x consecutive odd integers and an odd y, exactly[

x

y

]
multiples of y

will appear in the sequence if and only if, after dividing the sequence into disjoint
subsequences of y consecutive odd integers as in (12), the remaining sequence does
not contain a multiple of y.

Proof of Gauss Bracket Property 4a.
If the remaining sequence does not contain a multiple of y, then it follows from
Statement 3 that the number of multiples of y coincides with the number of disjoint
subsequences of y, which can be found using Statement 1.

Gauss Bracket Property 4b.
Given a sequence of x consecutive odd integers and an odd y, exactly[

x+ y − r
y

]
multiples of y

will appear in the sequence if and only if, after dividing the sequence into disjoint
subsequences of y consecutive odd integers as in (12), the remaining sequence of r
consecutive odd numbers contains a multiple of y.

Proof of Gauss Bracket Property 4b.
If the remaining sequence of r numbers contains a multiple of y, then the sequence
(starting with the same number) of x+y−r consecutive odd numbers has a remaining
sequence of 0 numbers and therefore a remaining sequence which does not contain a
multiple of y. Clearly, the number of multiples of y in our original sequence coincides
with the number of multiples of y in our new sequence of x + y − r consecutive odd
numbers, which can be found using Gauss Bracket Property 4a.

We are now ready to prove Gauss Bracket Properties 3 and 4.

Proof of Gauss Bracket Property 3.
In order to find the number of multiples of an odd number y in the sequence

1, 3, 5, . . . , 2x− 1

we can find the number of multiples of y in the sequence

1, 2, 3, . . . , 2x (13)
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and then subtract the number of multiples of 2y in (13). We know from Gauss Bracket
Property 3a that,[

2x

y

]
= number of multiples of y that appear in (13),

[
2x

2y

]
= number of multiples of 2y that appear in (13).

From this, Gauss Bracket Property 3 follows easily.

Proof of Gauss Bracket Property 4.
Follows easily from Gauss Bracket Properties 4a and 4b.

6.2 Double Factorials

While a factorial is a product of consecutive integers, a double factorial is a product of
consecutive even or odd integers. Schur uses double factorials in his work, denoting
the product of odd integers up to 2n as u2n. In this section, we will explore u2n.
Firstly, we will express u2n in terms of factorials and use Stirlings’s formula to find
an expression for log u2n. Then, we will use Gauss Bracket Properties 1 and 3 in
order to find powers of prime factors of u2n and in turn an expression for the prime
factorisation of u2n.

6.2.1 Stirling’s Formula

Stirling’s formula is an approximation for the logarithm of a factorial given by

log n! = (n+ 1
2
) log n− n+ log

√
2π +Rn (0 < Rn <

1
12

)

For more information on Stirling’s formula, I refer the reader to [2].

Let

u2n =
(2n)!

2nn!
. (14)

Note that this is equivalent to our original definition

u2n = (2n− 1)!!
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as

(2n)!

2nn!
=

1 · 2 · 3 · · · (2n− 1) · 2n
2n · 1 · 2 · 3 · · · (n− 1) · n

=
1 · 2 · 3 · · · (2n− 1) · 2n

(2 · 1) · (2 · 2) · (2 · 3) · · · (2 · (n− 1)) · (2 · n)

=
1 · 2 · 3 · · · (2n− 1) · 2n
2 · 4 · 6 · · · (2n− 2) · 2n

= 1 · 3 · 5 · · · (2n− 1)

= (2n− 1)!!

Using Stirling’s formula and (14), we are able to find an expression for log u2n

log u2n = log

(
(2n)!

2nn!

)
= log(2n)!− log 2n − log n!

=
(
2n+ 1

2

)
log 2n− 2n+ log

√
2π +R2n

− n log 2−
(
n+ 1

2

)
log n+ n− log

√
2π −Rn

= n log n+ n log 2 + 1
2

log 2− n+ Sn,

where Sn = R2n −Rn and therefore − 1
12
< Sn <

1
12

.

6.2.2 Finding Powers of Prime Factors of u2n

We can find the highest power λn (p) of p ∈ P such that pλn(q) divides u2n by counting
how many multiples of p appear in the sequence 1, 3, . . . , 2n − 1. We then count
multiples of powers of p since these will account for division by p several times. A
multiple of pn is also a multiple of pn−1 so if we count multiples of p, p2,. . . ,pn we will
indeed count multiples of pn n times.
Using Gauss Bracket Property 3, we can represent λn(p) as

λn (p) =
m∑
µ=1

{[
2n

pµ

]
−
[
n

pµ

]}
, (15)

where m is the highest power of p, for which pm < 2n.
Using Gauss Bracket Property 1 we can rewrite (15) as

λn (p) =
m∑
µ=1

[
2n+ pµ

2pµ

]
. (16)
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6.2.3 The Prime Factorisation of u2n

It follows from the previous section that we are able to write the prime factorisation
of u2n as

u2n =
∏
p∈P

3≤p≤2n

pλn(p). (17)

Note that we don’t consider p = 2 as u2n is always odd.
Let us now look at an example:

Example 14. Let n = 8. Then

u16 =
∏
p∈P

3≤p≤16

pλ8(p). (18)

First note, that we must only consider p = 3, 5, 7, 11, 13 as these are the only prime
numbers in the interval 3 ≤ p ≤ 16. Using (16) we are able to find λ8(p) for each p.
Starting with p = 3 we find

λ8(3) =
m∑
µ=1

[
16 + 3µ

2 · 3µ

]
.

Since,

32 < 16 < 33,

it follows that m = 2 and therefore,

λ8(3) =

[
19

6

]
+

[
25

18

]
= 4.

Similarly,

λ8(5) = 2

λ8(7) = 1

λ8(11) = 1

λ8(13) = 1.

Using our values of λ8(p) and our expression for the prime factorisation of u16 given
in (18), we have

u16 = 34 · 52 · 7 · 11 · 13.

In Schur’s work, he proves the following Lemma and uses it in the proof of Theorem
3.
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Lemma 4 (Schur, [13]).
If pλn(p) is the highest power of an odd prime p which divides u2n, then for n ≥ 1

λn(p) <
2n

p

Proof of Lemma 4.
If p > 2n, then p clearly does not divide u2n and λn(p) = 0.
If p < 2n, then we can use (16).

Let m be the highest power of p such that pm < 2n.

If m = 1, then because p < 2n (and therefore 1
2
< n

p
), it follows from (16) that

λn(p) =

[
2n+ p

2p

]
≤ 2n+ p

2p

=
n

p
+

1

2

<
2n

p
,

If m = 2, then since p ≥ 3, it follows from (16) that

λn(p) ≤ 2n+ p

2p
+

2n+ p2

2p2

=
n

p
+
n

p2
+ 1

≤ n

p
+

n

3p
+ 1.

Since p2 < 2n, it follows that

2n

p
− n

p
− n

3p
− 1 =

2n

3p
− 1

≥ 2n

p2
− 1

> 0.

Therefore,

λn(p) ≤ n

p
+

n

3p
+ 1 <

2n

p
.
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If m ≥ 3. Then, from (16),

λn(p) ≤ m

2
+
n

p
+
n

p2
+ · · ·+ n

pm

<
m

2
+
n

p
+
n

p

(
1

3
+

1

32
+ · · ·

)
<
m

2
+
n

p
+

n

2p
.

From this, we know that λn(p) < 2n
p

if mp < n. We know that 2n > pm, so it is left

to show that pm > 2mp or equivalently pm−1 > 2m for m ≥ 3. From,

pm−1 ≥ 3m−1

= (1 + 2)m−1

=
m−1∑
k=0

(
m− 1

k

)
1m−1−k · 2k

>
2∑

k=0

(
m− 1

k

)
1m−1−k · 2k

=

(
m− 1

0

)
1m−1 · 20 +

(
m− 1

1

)
1m−2 · 21 +

(
m− 1

2

)
1m−3 · 22

≥ 1 + 2(m− 1) + 4

(
m− 1

2

)
> 2m,

we see that this inequality holds for m ≥ 3 and therefore, λn <
2n
p

is true for m ≥ 3.
This was the final case, so we have now proven the Lemma.
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7 A Theorem on Prime Numbers

7.1 Proof of Theorem 1

Theorem 1. For k ∈ N (k > 2) such that p = 2k+ 1 ∈ P (p > 5), it is true that any
sequence of k consecutive odd numbers, for which all terms are greater than 2k + 1,
will contain at least one term with a prime factor greater than 2k + 1.

2h+ 1, 2h+ 3, . . . , 2h+ 2k − 1 (h > k)

For p = 3, the only counterexamples are powers of 3α > 3 and for p = 5, the only
counterexample is 25, 27.

Let us consider the case k = 5.
According to the theorem, every sequence

2h+ 1, 2h+ 3, 2h+ 5, 2h+ 7, 2h+ 9 (h > 5)

of 5 consecutive odd numbers, for which all terms are greater than 11, will contain
at least one term with a prime factor greater than 11. Let us take, for example, the
sequence

21, 23, 25, 27, 29 (h = 10)

In this sequence, we have two prime numbers (23 and 29), so their prime factors are
indeed greater than 11. Note that it is not necessary for any of the terms to be prime,
we are only interested in the prime factors of the terms. Another sequence for k = 5
would be

115, 117, 119, 121, 123 (h = 57)

None of these terms are prime numbers but all of them except 121 are divisible by
some prime number greater than 11.

According to the theorem, which sequences don’t necessarily have this property?

1. If p ≤ 5 (k ≤ 2).
For p = 5 (k = 2), there exists a counterexample: 25, 27 so it is not possible to
delete this condition.

2. If any of the terms are less than or equal to p = 2k + 1. i.e. h < k.
For p = 7 (k = 3), there would exist a counterexample: 5, 7, 9 so it is not
possible to delete this condition.

3. If 2k + 1 is not prime. The theorem actually holds for all 2k + 1 ∈ N, this is a
nice Corollary of Theorem 1 which we will prove later.
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Proof of Theorem 1.
Suppose there exists a counterexample Ch,p.
i.e. Suppose there exists a sequence of k consecutive odd numbers

2h+ 1, 2h+ 3, . . . , 2h+ 2k − 1 (h > k) (19)

such that all terms have prime factors less than or equal to p = 2k + 1 ∈ P.

Then, for any counterexample Ch,p, let

C =
(2h+ 1) · (2h+ 3) · · · · · (2h+ 2k − 1)

1 · 3 · 5 · · · · · (2k − 1)
(20)

=
u2k+2h

u2k · u2h
. (21)

Part 1
We will now use the theory developed in Section 6.2 to tell us more about C in the
case that Ch,p is a counterexample.

It follows from Section 6.2.3, that

u2h+2k =
∏
q∈P

3≤q≤2h+2k

qλh+k(q) (22)

u2h =
∏
q∈P

3≤q≤2h

qλh(q) (23)

u2k =
∏
q∈P

3≤q≤2k

qλk(q) (24)

Let us consider

u2k+2h

u2h
= (2h+ 1) · (2h+ 3) · . . . · (2h+ 2k − 1) .

Since

2h+ 1, 2h+ 3, . . . , 2h+ 2k − 1 (h > k)

is a counterexample, the prime factorisation of each of these numbers cannot contain
prime divisors greater than p = 2k + 1, so we need only consider 3 ≤ q ≤ p.
So, for any counterexample Ch,p, it is true that

C =
∏
q∈P

3≤q≤p

qvq (25)
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where vq = λh+k(q)− λh(q)− λk(q), which we know from Section 6.2.2 to be,

vq =
m∑
µ=1

{[
2h+ 2k + qµ

2qµ

]
−
[

2k + qµ

2qµ

]
−
[

2h+ qµ

2qµ

]}
(26)

and m is the highest power of q such that qm < 2h + 2k. Note that we have not
assumed that vq is positive and so (25) does not represent a prime factorisation of C
and C is not necessarily a natural number.

Part 2
We now use C to find an inequality that must be satisfied if there exists a counterex-
ample Ch,p.

Let us now investigate C, by first determining possible values of vq. From Gauss
Bracket Property 2, it follows that every term of vq in (26) is equal to −1, 0 or 1 so,

vq ≤ m <
log(2h+ 2k)

log q
. (27)

We know from (25) that

logC =
∑
q∈P

3≤q≤p

log(qvq)

=
∑
q∈P

3≤q≤p

vq log q. (28)

From (27), we therefore know that

logC <
∑
q∈P

3≤q≤p

log(2h+ 2k)

log q
log q

=
∑
q∈P

3≤q≤p

log(2h+ 2k)

= (π(p)− 1) log(2h+ 2k). (29)

where π(p) is defined, as in Section 2 to be the amount of prime numbers in the
interval 2 ≤ q ≤ p.

In Section 6.2.1, we used Stirling’s formula to find the following expression for log u2n

log u2n = n log n+ n log 2 + 1
2

log 2− n+ Sn (− 1
12
< Sn <

1
12

)
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We can now use this to find an expression for logC.

logC = log

(
u2h+2k

u2hu2k

)
= log u2h+2k − log u2h − log u2k

= (h+ k) log(h+ k) + (h+ k) log 2 + 1
2

log 2− (h+ k) + Sh+k

− h log h− h log 2− 1
2

log 2 + h− Sh
− k log k − k log 2− 1

2
log 2 + k − Sk

= (h+ k) log(h+ k)− h log h− k log k − 1
2

log 2 + S, (30)

where S = Sh+k − Sh − Sk and therefore −1
4
< S < 1

4
.

Letting

h = Qk (31)

and expressing (30) in terms of Q gives

logC = (Qk + k) log(Qk + k)−Qk logQk − k log k − 1
2

log 2 + S.

Since Q + 1 = Q
(

1 + 1
Q

)
and therefore log(Q+ 1) = logQ + log

(
1 + 1

Q

)
it follows

that

logC = (Qk + k) logQk + (Qk + k) log
(

1 + 1
Q

)
−Qk logQk − k log k − 1

2
log 2 + S

= k logQk +Qk log
(

1 + 1
Q

)
+ k log

(
1 + 1

Q

)
− k log k − 1

2
log 2 + S

= k logQ+Qk log
(

1 + 1
Q

)
+ k log

(
1 + 1

Q

)
− 1

2
log 2 + S

= k log(Q+ 1) +Qk log
(

1 + 1
Q

)
− 1

2
log 2 + S (32)

Using the Maclaurin expansion of log(1 + x), we find that log
(

1 + 1
Q

)
can be repre-

sented as

log

(
1 +

1

Q

)
=
∞∑
n=1

(−1)n+1

n

(
1

Q

)n
=
∞∑
n=1

{
1

(2n− 1)Q2n−1 −
1

(2n)Q2n

}
. (33)

Since Q =
h

k
and h > k, it follows that Q > 1 and

1

(2n− 1)Q2n−1 −
1

(2n)Q2n
=

1

Q2n

(
2n (Q− 1) + 1

2n (2n− 1)

)
> 0 ∀n ∈ N.
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i.e every term in (33) is positive.
It follows that if we take only finitely many terms of (33), the result will be smaller

than log
(

1 + 1
Q

)
.

Therefore,

log

(
1 +

1

Q

)
>

1

Q
− 1

2Q2
.

Substituting this inequality into (32) and using the fact that −1
4
< S < 1

4
gives

logC > k log(Q+ 1) + k − k

2Q
− 1

2
log 2− 1

4
. (34)

Furthermore,

(π(p)− 1) log(2h+ 2k) = (π(p)− 1) log(2kQ+ 2k)

= (π(p)− 1) (log 2k + log(Q+ 1))

= (π(p)− 1) log(Q+ 1) + π(p) log 2k − log 2k

< (π(p)− 1) log(Q+ 1) + π(p) log p− log
p− 1

2
. (35)

From (34), (29) and (35) we have

k log(Q+ 1) + k − k

2Q
− 1

2
log 2− 1

4
< logC

< (π(p)− 1) log(2h+ 2k)

< (π(p)− 1) log(Q+ 1) + π(p) log p− log
p− 1

2

Which rearranges to give

(k − π(p) + 1) log(Q+ 1) < −k +
k

2Q
+

1

2
log 2 +

1

4
+ π(p) log p− log

p− 1

2

Remembering p = 2k + 1 and expressing everything in terms of p gives(
p+ 1

2
− π(p)

)
log(Q+ 1) < −p− 1

2
+
p− 1

4Q
+

1

2
log 2 +

1

4
+ π(p) log p− log

p− 1

2

= −p
2

+
1

2
+

p

4Q
− 1

4Q
+ π(p) log p+

1

2
log 2 +

1

4
− log

p− 1

2

< −p
2

+
p

4Q
+ π(p) log p+

1

2
log 2 +

1

2
+

1

4
− log

p− 1

2
,

(36)

since − 1

4Q
< 0 ∀Q > 1.
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For p > 7 it is true that

p− 1

2
≥ 5 > e

1
2
log 2+ 1

4
+ 1

2 (37)

It follows from (36) that if there exists a counterexample for some p ≥ 11 then the
following inequality must hold(

p+ 1

2
− π(p)

)
log(Q+ 1) < −p

2
+

p

4Q
+ π(p) log p (38)

Part 3
Using this inequality, we will show that if we introduce a lower bound R on Q + 1,
then the values of p for which there can exist a counterexample are bounded from above.

For Q ≤ 4

2h+ 2k

2h
=
Q+ 1

Q
≤ 5

4

The odd numbers contained in the interval

2h < x ≤ 5

4
· 2h (39)

will be the elements of our sequence (19) of consecutive odd numbers between 2h and
2h+ 2k.
Note that,

2h ≥ 2k + 2 > 2k + 1 = p.

It follows that for p ≥ 29, 2h ≥ 29 and therefore, by Lemma 1, the interval (39) must
contain at least one prime number P > 2h > p. Therefore, for p ≥ 29, a counterex-
ample can only exist for Q > 4.

Let us now introduce an upper bound R on Q+ 1.

If there is a counterexample for which

Q+ 1 ≥ R > 5 (40)

Then, using Approximation 1,

π(p) <
3

2

p

log p
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and the inequality (38), it follows that(
p

2
− 3

2

p

log p

)
logR < −p

2
+

p

4 (logR− 1)
+

3

2
p.

So, (
logR− 2− 1

2R− 2

)
log p < 3 logR.

In particular, if logR > 3 then the coefficient of log p will be positive and the inequal-
ity will still hold after division by the coefficient of log p on both sides. Therefore, we
suppose

log(Q+ 1) ≥ logR > 3 (41)

In this case, we get p < eb where

b =
3 logR

logR− 2− 1
2R−2

.

If we choose R = 21 then logR > 3 as required, so it must follow that p < eb, where

b =
3 log 21

log 21− 2− 1
40

< 9 +
1

4

It follows that for Q+ 1 ≥ 21,

p < e9+
1
4 = 10404.56...

Part 4
By considering large values of p we can find another inequality which must hold if
there exists a counterexample for p. We will however show that the inequality does
not hold, in turn proving the theorem for large p.

Suppose that, p ≥ 14285 then it follows from the previous part, that Q+ 1 < 21.
For a prime number q >

√
21p we have

q2 > 21p

> (Q+ 1)p

>

(
h

k
+ 1

)
2k

= 2h+ 2k.
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It follows from (28) that

logC =
∑
q∈P

3≤q≤
√
21p

vq log q +
∑
q∈P√

21p<q≤p

vq log q.

For q >
√

21, it follows from (27) that vq ≤ 1, giving us

logC ≤
∑
q∈P

3≤q≤
√
21p

vq log q +
∑
q∈P√

21p<q≤p

log q

=
(
π(
√

21p)− 1
)

log(2h+ 2k) + ϑ(p)− ϑ(
√

21p),

where ϑ(p), is defined, as in Section 2, to be the sum of the logarithms of primes up
to and including p.
Using this inequality, we can use a similar method as in Part 2 to find another
inequality (similar to (38)), that must hold if there exists a counterexample for p:(

p+ 1

2
− π(

√
21p)

)
log(Q+ 1) < −p

2
+

p

4Q
+ π(

√
21p) log p+ ϑ(p)− ϑ(

√
21p).

(42)

Note that,

Q > 4, log 5 >
8

5
and π(

√
21p) <

3

2

√
21p

log
(√

21p
) < 3

√
21p

log p
. (43)

Then it follows from (42) and (43) that

4p

5
+

4

5
− 24

√
21p

5 log p
=

(
p

2
+

1

2
− 3
√

21p

log p

)
· 8

5

<

(
p

2
+

1

2
− π(

√
21p)

)
· log 5

<

(
p+ 1

2
− π(

√
21p)

)
· log(Q+ 1)

< −p
2

+
p

4Q
+ π(

√
21p) log p+ ϑ(p)− ϑ(

√
21)

< −p
2

+
p

16
+ 3
√

21p+ ϑ(p)− ϑ(
√

21p),

which rearranges to give(
4

5
+

1

2
− 1

16

)
p <

24

5

√
21p

log p
+ 3
√

21p+ ϑ(p)− ϑ(
√

21p). (44)

Let ψ(x) be defined as in Section 2 to be

ψ(x) =
∞∑
n=1

ϑ(x
1
n )
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and then, since ψ(x)− ϑ(x) is a non-decreasing function and p >
√

21p

ϑ(p)− ϑ(
√

21p) ≤ ψ(p)− ψ(
√

21p)

Using Approximation 3 we know that,

ϕ(p) <
6

5
ap+ 3 log2 p+ 8 log p+ 5

ϕ(
√

21p) ≥ a
√

21p− 5 log
√

21p− 5

for a = 0.92129...

This gives

ϑ(p)− ϑ(
√

21p) < 1.106p− 0.92 ·
√

21p+ 3 log2 p+ 13 log p+ 10

Dividing (44) by p therefore gives

4

5
+

1

2
− 1

16
− 1.106 <

24

5

√
21

√
p · log p

+
2.08 ·

√
21

√
p

+
3 log2 p+ 13 log p+ 10

p
. (45)

Since the right hand side is monotonically decreasing for p > e, if the inequality does
not hold for p = 14285, then it will not hold for any p ≥ 14285.
Using the following inequalities

9.5 < log 14285 < 9.6
√

14285 > 119
√

21 < 4.6

it is easy to verify that the inequality (45) does not hold. Therefore no counterexam-
ple can occur for p ≥ 14285.

Part 5
Using different bounds on Q+1, we will treat different intervals of p, showing in turn
that no counterexamples can exist for p > 100.

If there exists a counterexample for p, of the form

2h+ 1, 2h+ 3, . . . , 2h+ 2k − 1 (h > k)

then it must be true that there are no prime numbers between 2h and 2h + 2k.
Remembering that h = Qk and supposing that

Q+ 1 < R, (46)

Rp ≤ n. (47)
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It follows that

2h+ 2k =

(
h

k
+ 1

)
2k

< (Q+ 1)p

≤ n.

Since
2h, 2h+ 1, 2h+ 3, . . . , 2h+ 2k − 1, 2h+ 2k

are all composite numbers, it must be true that L(2h + 2k) > 2k where L(x) is
defined, as in Section 2, to be the length of the longest sequence of consecutive
composite numbers up to and including x.
It follows then, that

Q+ 1 < R, Rp ≤ n =⇒ L(n) ≥ p. (48)

In Part 3 of this proof we found that if

Q+ 1 ≥ R,

logR > a ≥ 3,

b =
3a

a− 2− 1
2R−2

< β,

eβ < M,

then p < M must hold. Here is a table of particular values for R, a, β, M

R a β M
21 3 9.25 10405
28 3.3 7.8 2450
40 3.6 6.9 1000
50 3.9 6.2 500
100 4.6 5.35 215
230 5.43 4.76 117
400 5.9 4.6 100

(49)

Suppose there exists a counterexample for some p in the interval 10405 < p < 14285,
then Q + 1 < 21 (since otherwise, according to the table, p < 10405). From (48) we
know that if Q+ 1 < 21 then L(n) ≥ p where n ≥ 21p. In our case

21 · 10405 < 21p < 21 · 14285 < 300000 (50)

Since 300000 > 21p for all p in our interval, then L(300000) ≥ p must be true for all
p in our interval. However, from Approximation 5, we know that L(300000) < 2000.
This would imply p < 2000. No such p exist in our interval, so there exists no p in
our interval for which a counterexample is possible.
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Suppose there exists a counterexample for some p in the interval 2450 < p < 10405,
then Q + 1 < 28. Since 300000 > 28p for all p in our interval, then from (48) we
know that p ≤ L(300000). Also, we know from Approximation 5, we know that
L(300000) < 2000, which implies that p < 2000. No such p exist in our interval, so
there exists no p in our interval for which a counterexample is possible.

Using Approximation 5 and (48) we are able to show that there exists no counterex-
ample for p in any of the following intervals:

1000 < p < 2450,

500 < p < 1000,

215 < p < 500,

117 < p < 215,

100 < p < 117.

There exists no counterexample therefore, for p > 100.

Part 6

We will use the inequality from Part 2 and the method used in Part 5 to show that
there are no counterexamples for p ≥ 47.

Suppose there exists a counterexample for some p in the interval 47 ≤ p ≤ 100, then
if we are able to show that Q+ 1 < 50, then 5000 > 50p would be true for all p in our
interval and from Approximation 5 and (48) this would imply p < 47 and therefore
there exists no counterexample for p in our interval.

Suppose by contradiction that Q + 1 ≥ 50, then it is true that log(Q+ 1) > 3.9. At
the end of Part 2, we showed that if there exists a counterexample for p ≥ 11, then
the inequality (38) must hold. If Q + 1 ≥ 50 and therefore log(Q+ 1) > 3.9, then it
follows from (38) that

3.9

(
p+ 1

2
− π(p)

)
< −p− 1

2
− 1

2
+

p

4 · 49
+m log p.

Since p ≤ 97 < 2 · 49, it follows that

3.9

(
p+ 1

2
− π(p)

)
< −p− 1

2
+ π(p) log p+

p

4 · 49
− 1

2

< −p− 1

2
+ π(p) log p.

This rearranges to give

4.9p+ 2.9 < 2π(p)(3.9 + log p).

It can be verified that this inequality does not hold for any prime numbers in the
interval 47 ≤ p ≤ 97, so Q+ 1 < 50.
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We can therefore show, by the same method used in Part 5, that there are no coun-
terexamples for p in our interval.

There exists no counterexample therefore, for p ≥ 47.

Part 7

We will conclude the proof by showing that the counterexamples listed in the Theorem
are the only possible counterexamples. In order to do this, we will make use of Lemma
2.

It is obvious that for p = 3 then all powers of 3 greater than 3 are counterexamples.
From Lemma 2 it follows that the only counterexample for p = 5 is the sequence
25, 27. It is left to investigate the following prime numbers

7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43. (51)

In a sequence of k consecutive odd numbers, we know from Gauss Bracket Property

4, that there are at most
[
k+q−1
q

]
multiples of an odd prime number q.

Let

xp = k −
∑

7≤q≤p

[
k + q − 1

q

]
.

If there exists a counterexample for p and xp is positive, then at least xp numbers in
our counterexample sequence, must be of the form 3α · 5β. For all p in our remaining
list of prime numbers (51), xp ≥ 2. Therefore, it must be true that at least 2 numbers
of the form 3α · 5β would appear in a counterexample. Any two terms of a sequence
(19) cannot differ more than 2k− 2, so in order for a pair of numbers a, b of the form
3α · 5β to both appear in a sequence, b− a ≤ 2k − 2 = p− 3 must hold.

For p = 7, so k = 3, in order for there to exist a counterexample, there would need
to be a pair of numbers a, b of the form 3α · 5β such that b− a ≤ 4, both of which are
greater than 7. From Lemma 2 we know that the only pair satisfying these conditions
is 25, 27. There are only 2 sequences of k = 3 consecutive odd numbers containing
25, 27 and they are 23, 25, 27 and 25, 27, 29, neither of which are counterexamples
as 23 and 29 are prime numbers. Therefore, there is no counterexample for p = 7 and
we do not consider the pair 25, 27 for p > 7.

For p = 11, so k = 5, we look for a, b greater than 11 such that b − a ≤ 8 that we
have not yet ruled out. From Lemma 2 we know that the only pair satisfying these
conditions is 75, 81. (We already know from the previous case that no counterexample
can contain 25 and 27.) Any sequence of 5 consecutive odd numbers containing both
75 and 81 must also contain 77 and 79. Since 79 is a prime number, no such sequence
is a counterexample. Therefore, there is no counterexample for p = 11 and we do not
consider the pair 75, 81 for p > 11.
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For p = 13, so k = 6, we look for a, b greater than 13 such that b − a ≤ 10. From
Lemma 2 we know that the only pairs satisfying these conditions that we have not
previously ruled out are 15, 25 and 125, 135. Any sequence of 6 consecutive odd
numbers containing 15 and 25 must also contain 17, 19 and 23, all of which are
prime, meaning that no such sequence is a counterexample. Similarly, any sequence
of 6 consecutive odd numbers containing 125 and 135 must also contain 127 and
131, both of which are prime, meaning that no such sequence is a counterexample.
Therefore, there is no counterexample for p = 13 and we do not consider the pairs
15, 25 or 125, 135 for p > 13.

For p = 17, so k = 8, we look for a, b greater than 17 such that b − a ≤ 14. From
Lemma 2 we know that no such pair exists that we have not previously ruled out.
Therefore, there is no counterexample for p = 17.

For p = 19, so k = 9, we look for a, b greater than 19 such that b − a ≤ 16. From
Lemma 2 we know that no such pair exists that we have not previously ruled out.
Therefore, there is no counterexample for p = 13.

For p = 23, so k = 11, we look for a, b greater than 23 such that b − a ≤ 20. From
Lemma 2 we know that the only pairs satisfying these conditions that we have not
previously ruled out are 25, 45, 27, 45 and 225, 243. Any sequence of 11 consecutive
odd numbers containing 25 and 45 or 27 and 45 must also contain 29, 31, 37, 41
and 43, all of which are prime, meaning that no such sequence is a counterexample.
Similarly, any sequence of 11 consecutive odd numbers containing 225 and 243 must
also contain 227, 229, 233, 239 and 241, all of which are prime, meaning that no such
sequence is a counterexample. Therefore, there is no counterexample for p = 23 and
we do not consider the pairs 25, 45, 27, 45 or 225, 243 for p > 23.

We have shown that there is no counterexample for 7 ≤ p ≤ 23. Not only that,
but we have also shown that there does not exist a counterexample for p > 23 that
contains a pair a, b of the form 3α · 5β such that b− a ≤ 20 as we have ruled them all
out. Therefore, any pair a, b of the form 3α ·5β that both appear in a counterexample
must have a difference of at least 22. For 29 ≤ p ≤ 43, xp ≥ 3, so it must be true that
there are 3 numbers a < b < c of the form 3α · 5β in any counterexample. We also
know that b−a ≥ 22 and c− b ≥ 22 so it must be true that 2 · 22 ≤ c−a ≤ p− 3 but
no value of p ≤ 43 can satisfy this inequality so there cannot exist a counterexample
for 29 ≤ p ≤ 43.

Therefore, there is no counterexample for p ≥ 7 and the only counterexamples for
p = 3 and p = 5 are those stated in the theorem.

7.2 Proof of Corollary 1

Corollary 1 (Corollary of Theorem 1).
For k ∈ N (k > 2), it is true that any sequence of k consecutive odd numbers, for
which all terms are greater than 2k + 1, will contain at least one term with a prime
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factor greater than 2k + 1.

2h+ 1, 2h+ 3, . . . , 2h+ 2k − 1 (h > k)

For k = 1, the only counterexamples are powers of 3α > 3 and for k = 2, the only
counterexample is 25.

Proof of Corollary 1.
For every k > 2 there exists at least one odd prime number p such that p ≤ 2k + 1.
Let us take the largest prime number satisfying this inequality and call it p∗. If
p∗ = 2k∗ + 1, then

p∗ ≤ 2k + 1 (52)

k∗ ≤ k (53)

Since p∗ = 2k∗ + 1 is prime, we know from Theorem 1 that in any sequence of k∗

consecutive odd numbers greater than p∗ there exists at least one term of the sequence
divisible by a prime number q > p∗.
In other words, any sequence satisfying the following condition must have the follow-
ing property:

Condition 1.
The sequence must have k∗ terms, all of which are greater than p∗.

Property 1.
At least one of the terms is divisible by a prime number greater than p∗.

In order to prove Corollary 1 we need to show that any sequence satisfying the
following condition must have the following property:

Condition 2.
The sequence must have k terms, all of which are greater than 2k + 1.

Property 2.
At least one of the terms is divisible by a prime number greater than 2k + 1.

Note that if we have a sequence that satisfies Condition 2, then (from (52) and (53)) a
subsequence will satisfy Condition 1. Therefore, any sequence satisfying Condition 2
has Property 1. Since there are no prime numbers between p∗ and 2k+ 1 by choice of
p∗, Property 1 and Property 2 are equivalent. It follows that every sequence satisfying
Condition 2 has Property 2 and we have proven Corollary 1.
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8 Some Theorems on Irreducibility

In this section, the proofs of Theorems 2 and 3 are considered. The first parts of
the proofs of these theorems are very similar but the proof of theorem 3 takes a bit
longer due to the counterexamples that arise. An important corollary of these two
theorems, also proven by Schur in [13] is that Hermite polynomials are irreducible,
the proof of this will be presented at the end of this section.

8.1 Proof of Theorem 2

Theorem 2.
For n > 1, every polynomial of the form

f(x) = 1 + g1
x2

u2
+ g2

x4

u4
+ · · ·+ gn−1

x2n−2

u2n−2
± x2n

u2n

with gν ∈ Z, is irreducible over Q.

Proof of Theorem 2.
Let f(x) be a polynomial of the form

f(x) = 1 + g1
x2

u2
+ g2

x4

u4
+ · · ·+ gn−1

x2n−2

u2n−2
± x2n

u2n
(54)

with gν ∈ Z. Then, F (x) = u2nf(x) is a polynomial of the form

F (x) = u2n + g1u2n
x2

u2
+ g2u2n

x4

u4
+ · · ·+ gn−1u2n

x2n−2

u2n−2
± x2n. (55)

It follows, that F (x) is an integer polynomial with leading coefficient ±1. In order
to prove the theorem, it is therefore enough to prove that F (x) is irreducible over Z.
For 2n = 2, F (x) = 1± x2. Since 1− x2 is reducible over Z, F (x) could be reducible
for n = 1. We therefore wish to prove that F (x) is irreducible for n > 1 which would,
in turn, prove the theorem.

Part 1

Suppose by contradiction, that F (x) is reducible in Z. Then,

F (x) = A(x)B(x), A(x) = xk + a1x
k−1 + · · ·+ ak.

where A(x) and B(x) are integer polynomials, A(x) is irreducible and 2n ≥ 2k i.e.
n ≥ k. It follows that the integer ak must be a factor of u2n and must therefore be
odd.
Let p ≥ 3 be a prime factor of ak and let α be a root of A(x). Then,

A(α) = αk + a1α
k−1 + · · ·+ ak = 0
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so that

α(αk−1 + a1α
k−2 + · · ·+ ak−1) = −ak

and it follows that α divides ak in the algebraic number field Q(α). Note that α is
an algebraic integer and Q(α) is an algebraic field extension of degree k. We can
therefore define ideals of the ring of integers OQ(α). From Ideal Property 2, it follows
from the fact that α divides ak that 〈α〉 divides 〈ak〉. Similarly, by choice of p, we
know that 〈p〉 divides 〈ak〉. Since 〈α〉 and 〈p〉 are both divisible by 〈ak〉, it follows
from Ideal Property 3 that there exists a prime ideal p which divides 〈α〉 and 〈p〉 at
least once. Let the highest power of p that divides 〈α〉 be pr and the highest power
of p that divides 〈p〉 be ps. Clearly, r ≥ 1 and s ≥ 1 by choice of p, but it also follows
from Lemma 3 that s ≤ k. Since α is a root of A(x) and therefore of F (x), it follows
that

u2n + g1u2n
α2

u2
+ g2u2n

α4

u4
+ · · ·+ gn−1u2n

α2n−2

u2n−2
± α2n = 0. (56)

Let g0 = 1, gn = ±1, then every term has the form gνu2n
α2ν

u2ν
. Since u2n is divisible by

exactly pλn(p), it follows from our choice of r and s above that

u2n is divisible by exactly pλn(p)s, α2n is divisible by exactly p2nr.

Since we don’t know the divisors of gν , it follows that,

gνu2n
α2ν

u2ν
is divisible by at least pλn(p)s+2νr−λν(p)s.

Suppose for all ν ≥ 1, 2νr > λν(p)s, then every term except u2n is divisible by a
higher power of p than u2n, which from (56) cannot be true. It therefore follows that
there exists at least one ν ≥ 1 such that

2νr ≤ λν(p)s.

It follows from the fact that

r ≥ 1, 1 ≤ s ≤ k

that

2ν ≤ λν(p)k

for some ν ≥ 1. From Lemma 4 we know that

λν(p) <
2ν

p
,

therefore

p < k. (57)

49



For k ≤ 3 it follows from our choice of p and from the fact that p < k, that ak has no
prime factors and must therefore be equal to ±1.

Part 2

Let us rewrite F (x) as

F (x) = ±x2n + gn−1(2n− 1)x2n−2 + gn−2(2n− 1)(2n− 3)x2n−4 + · · · . (58)

Clearly, if q is an (odd) prime number which divides (2n−1), then q will divide every
term except the first in (58), if instead q divides (2n − 3), then q will divide every
term except the first two in (58). We can generalise this property by introducing a
parameter l. Then, if q divides (2n − 2l + 1), then F (x) mod q will be divisible by
x2n−2l+2. It follows that if q divides any of the following l numbers

2n− 2l + 1, 2n− 2l + 3, . . . , 2n− 1 (l ≥ 1)

then F (x) mod q is divisible by at least x2n−2l+2.
Suppose that

2n− 2l + 2 > 2n− k (2l < k + 2). (59)

Recall that B(x) is an integer polynomial of the form

B(x) = ±x2n−k + b1x
2n−k−1 + · · ·+ b2n−k,

therefore, B(x) mod q can be at most divisible by x2n−k (in the case b1, . . . b2n−k are
all divisible by q) so since 2l < k + 2, A(x) mod q must be divisible by at least x
and ak must be divisible by q and therefore from (57) q < k.
In particular, if q is a prime divisor of 2n− 1 (the case l = 1) then q must divide ak.
Therefore all prime divisors of 2n− 1 (where 2n− 1 ≥ 3 because we are considering
n > 1) are also prime divisors of ak so that ak cannot be equal to ±1 and therefore
k ≤ 3 cannot be true. We therefore only consider k > 3.
Let k > 3, then for c ≥ 1, k = 2c+2 if k even or 2c+3 if k odd, we therefore represent
k as

k = 2c+ 2 + ε ε = 0 or 1. (60)

From (59), it follows that the largest value of l (for k of the above form) is of the
form

l = c+ 1 + ε. (61)

Using the fact that n ≥ k and the above forms of k and l, we know that

2n− 2l + 1 ≥ 2k − 2l + 1 = 2c+ 3 > 2c+ 1 (62)

50



for all k > 3 and 2l < k + 2. Since q < k is an odd prime and ε = 0 if k even and
ε = 1 if k odd, we know that

q ≤ k − 1− ε = 2c+ 1. (63)

In conclusion, if F (x) is reducible over Z, then we must have a sequence of l = c+1+ε
i.e. at least c+ 1 odd numbers which are all greater than 2c+ 1 (from (62)) and are
only divisible by prime numbers q ≤ 2c + 1 (from (63)). It follows from Corollary 1
that this is impossible for c > 2 but this also cannot happen for c = 1 or c = 2. The
case c = 1 would be a sequence of 2 consecutive numbers, that are both greater than
3 and are only divisible by prime numbers q ≤ 3, it is impossible that two powers of
3 are consecutive odd numbers and therefore there exists no such sequence. The case
c = 2 would be a sequence of 3 consecutive numbers, that are both greater than 5
and of the form 3α5β which we have also shown in the proof of Theorem 1 to not be
possible. Since no such sequence exists, F (x) must be irreducible over Z and therefore
so must f(x) be irreducible over Q for n > 1.

8.2 Proof of Theorem 3

Theorem 3.
Every polynomial of the form

g(x) = 1 + g1
x2

u4
+ g2

x4

u6
+ · · ·+ gn−1

x2n−2

u2n
± x2n

u2n+2

(64)

with gν ∈ Z, is irreducible over Q, except for the case that 2n = 3r−1 for some r ≥ 2.
In this case, g(x) has just one factor x2 ± 3 and division by this factor results in an
irreducible polynomial over Q.

Proof of Theorem 3.
Let g(x) be a polynomial of the form

g(x) = 1 + g1
x2

u4
+ g2

x4

u6
+ · · ·+ gn−1

x2n−2

u2n
± x2n

u2n+2

(65)

with gν ∈ Z. Then G(x) = u2n+2g(x) is a polynomial of the form

G(x) = u2n+2 + g1u2n+2
x2

u4
+ g2u2n+2

x4

u6
+ · · ·+ gn−1u2n+2

x2n−2

u2n
± x2n. (66)

In order to prove that g(x) is irreducible over Q, it is enough to prove that G(x) is
irreducible over Z.

Part 1
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Suppose by contradiction, that G(x) is reducible in Z. Then,

G(x) = A(x)B(x), A(x) = xk + a1x
k−1 + · · ·+ ak.

where A(x) and B(x) are integer polynomials, A(x) is irreducible and 2n ≥ 2k i.e.
n ≥ k. It follows that the integer ak must be a factor of u2n+2 and must therefore be
odd.
Let p ≥ 3 be a prime divisor of ak and let α be a root of A(x). Then,

A(α) = αk + a1α
k−1 + · · ·+ ak = 0

so that

α(αk−1 + a1α
k−2 + · · ·+ ak−1) = −ak

and it follows that α divides ak in the algebraic number field Q(α). Just as in the
proof of Theorem 2, it follows that there exists a prime ideal p which divides 〈α〉 and
〈p〉 and the highest powers of p which divide 〈α〉 and 〈p〉 are pr and ps, where

r ≥ 1, 1 ≤ s ≤ k (67)

Since α is a root of A(x) and therefore of G(x), it follows that

u2n+2 + g1u2n+2
α2

u4
+ g2u2n+2

α4

u6
+ · · ·+ gn−1u2n+2

α2n−2

u2n
± α2n = 0. (68)

Let g0 = 1, gn = ±1, then every term has the form

gνu2n+2
α2ν

u2ν+2

.

Since u2n+2 is divisible by exactly pλn+1(p), it follows from our choice of r and s above
that

u2n+2 is divisible by exactly pλn+1(p)s, α2n is divisible by exactly p2nr.

Since we don’t know the divisors of gν , it follows that,

gνu2n+2
α2ν

u2ν+2

is divisible by at least pλn+1(p)s+2νr−λν+1(p)s.

Suppose for all ν ≥ 1, 2νr > λν+1(p)s, then every term except u2n+2 is divisible by
a higher power of p than u2n+2, which from (68) cannot be true. It therefore follows
that there exists at least one ν ≥ 1 such that

2νr ≤ λν+1(p)s.

It follows from (67) that

2ν ≤ λν+1(p)k (69)
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for some ν ≥ 1. From Lemma 4, it follows that

2ν <
2ν + 2

p
k, (70)

and from (69) we know that λν+1(p) ≥ 1 and therefore

2ν + 2 > p. (71)

Suppose p > k + 1 i.e. k ≤ p− 2, then it follows from (70) that

2νp < (2ν + 2)(p− 2) = 2νp+ 2p− 4ν − 4

but this implies that p > 2ν + 2 which from (71) cannot be true. Therefore

p ≤ k + 1. (72)

We have shown that if p ≥ 3 is a prime divisor of ak, then p ≤ k+ 1. It follows then,
that for k < 2, ak has no prime factors and must therefore be equal to ±1.

Part 2

Let us rewrite G(x) as

G(x) = ±x2n + gn−1(2n+ 1)x2n−2 + gn−2(2n+ 1)(2n− 1)x2n−4 + · · · . (73)

Similar to the proof of Theorem 2, we introduce a parameter l. Then, if q ≥ 3 is
a prime divisor of (2n − 2l + 3), then G(x) mod q will be divisible by x2n−2l+2. It
follows that if q ≥ 3 is a prime divisor of any of the following l numbers

2n− 2l + 3, 2n− 2l + 5, . . . , 2n+ 1 (l ≥ 1)

then G(x) mod q is divisible by at least x2n−2l+2.
Suppose that

2n− 2l + 2 > 2n− k (2l < k + 2) (74)

For the polynomial

B(x) = ±x2n−k + b1x
2n−k−1 + · · ·+ b2n−k,

B(x) mod q can be at most divisible by x2n−k (in the case b1, . . . b2n−k are all divisible
by q) so from (74), A(x) mod q must be divisible by at least x. Therefore, ak must
be divisible by q and from (72) q ≤ k + 1.
In particular, if q is a prime divisor of 2n + 1 (the case l = 1) then q must divide
ak. Therefore all prime divisors of 2n + 1 are also prime divisors of ak. Since n > 1,
2n+ 1 > 3 so that ak cannot be equal to ±1 and therefore k < 2 cannot be true. We
therefore only consider k ≥ 2.
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Let k ≥ 2, then for c ≥ 1, k = 2c if k even or 2c + 1 if k odd, we therefore represent
k as

k = 2c+ ε, ε = 0 or 1. (75)

It follows that the largest value of l such that (74) holds must be of the form

l = c+ ε. (76)

Using the fact that n ≥ k and the above forms of k and l, we know that

2n− 2l + 3 ≥ 2k − 2l + 3 = 2c+ 3 > 2c+ 1. (77)

Since q ≤ k + 1 and ε = 0 if k even and ε = 1 if k odd, we know that

q ≤ k + 1 = 2c+ 1 + ε

which since q is odd implies that

q ≤ 2c+ 1. (78)

In conclusion, if G(x) is reducible over Z, then we must have a sequence of l = c+ ε
odd numbers which are all greater than 2c + 1 (from (77)) and are only divisible
by prime numbers q ≤ 2c + 1 (from (78)). It follows from Corollary 1 that this is
impossible for c > 2.

The case c = 1 and ε = 1 would be a sequence of 2 consecutive odd numbers
(2n − 1, 2n + 1), that are both greater than 3 and are only divisible by odd prime
numbers q ≤ 3. It is impossible that two powers of 3 are consecutive odd numbers
and therefore there exists no such sequence. The case c = 1 and ε = 0 would be a
sequence of 1 odd number (2n + 1), which is greater than 3 and only divisible by
3, so if 2n + 1 = 3r > 3 then such a sequence could exist and G(x) could have an
irreducible factor A(x). Since, in this case c = 1 and ε = 0, from (75), k = 2 and
A(x) would be a quadratic polynomial.

The case c = 2 and ε = 1 would be a sequence of 3 consecutive numbers (2n−3, 2n−
1, 2n + 1), that are all greater than 5 and of the form 3α5β which we have already
shown in the proof of Theorem 1.2 to not be possible. The case c = 2 and ε = 0
would be a sequence of 2 consecutive odd numbers (2n− 1, 2n+ 1), that are greater
than 5 and of the form 3α5β, for which there exists just one sequence according to
Corollary 1, namely 25, 27. So, if 2n + 1 = 27 then such a sequence could exist and
G(x) could have an irreducible factor A(x). Since, in this case c = 2 and ε = 0, from
(75), k = 4 and A(x) would be a polynomial of degree 4.

It follows therefore that G(x) and therefore g(x) is irreducible over Q except for if
2n + 1 = 3r > 3 in which case there could exist a quadratic factor or if 2n + 1 = 27
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in which case there could exist a polynomial factor of degree 4. It is left to determine
if such polynomial factors exist.

Part 3

We begin by investigating the case 2n+ 1 = 3r > 3, it follows that

2n = 3r − 1 ≥ 32 − 1 = 8.

We suppose that a quadratic polynomial

A(x) = x2 + a1x+ a2

is an irreducible factor of G(x). As discussed above, we know that a2 is divisible by
every prime divisor of 2n+ 1, it therefore follows that

a2 = ±3ρ, ρ ≥ 1.

We now wish to prove by contradiction that a1 = 0. Suppose a1 is non-zero, then
A(x) is a non-even factor of the even polynomial G(x), meaning that A(−x) is a
second factor of G(−x) = G(x). This means that

G(x) = A(x)A(−x)C(x)

where C(x) is some polynomial

C(x) = ±x2n−4 + c1x
2n−5 + . . . . (79)

From (73) we know that if q is a prime divisor of 2n−1, then G(x) mod q is divisible
by at least x2n−2 and C(x) mod q is at most divisible by x2n−4 (from (79)), so

A(x)A(−x) = x4 + (2a2 − a21)x2 + a22

must be divisible mod q by at least x2 meaning that a2 must be divisible by q. Since

a22 = ±32ρ

is only divisible by 3, it is not true that any prime factor of 2n − 1 = 3r − 2 will be
a prime divisor of a22 and so there cannot exist a second quadratic factor. It follows,
that a1 = 0.

Part 4

Since a1 = 0, the quadratic factor of G(x) (if it exists) is of the form A(x) = x2± 3ρ.
It is left to find for which values of ρ, A(x) would be a factor of G(x). In other words,
for h1, h2, . . . where hν = gν if A(x) = x2 − 3ρ and hν = −gν if A(x) = x2 + 3ρ, for
which values of ρ does

u2n+2 + h1u2n+2
3ρ

u4
+ h2u2n+2

32ρ

u6
+ · · ·+ hn−1u2n+2

3(n−1)ρ

u2n
± 3nρ = 0 (80)
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hold? Since we can rearrange (80), we can equate u2n+2± 3nρ with all other terms of
(80). It therefore follows that the greatest common divisor of

3ρu2n+2

u4
,

32ρu2n+2

u6
. . . ,

3(n−1)ρu2n+2

u2n
(81)

must also divide u2n+2 ± 3nρ. Clearly, the last number of (81) is equal to

(2n+ 1) · 3(n−1)ρ = 3(n−1)ρ+r,

since we are investigating the case 2n + 1 = 3r. The greatest common divisor is
therefore of the form 3δ where δ is to be found. The νth number in (81) is divisible
by

3νρ−λν+1(3)+λn+1(3).

Therefore, δ is the smallest of

νρ− λν+1(3) + λn+1(3) ν = 1, 2, . . . , n− 1.

From Lemma 4, it follows that for ν ≥ 2, ρ ≥ 1

λν+1(3) <
2ν + 2

3

=
2ν

3
+

2

3

≤ 2ν

3
+
ν

3
= ν. (82)

Since ν ≥ 2 > 1, it follows that

ρν − ν > ρ− 1.

Therefore,

ν < ρν − ρ+ 1,

and it follows from (82) that

λν+1(3) < ρν − ρ+ 1, (83)

for ν ≥ 2, whereas for ν = 1

ρν − λν+1(3) = ρ− λ2(3) = ρ− 1.

Therefore, from (83) for ν ≥ 2, the value of ρν − λν+1(3) is always smaller than for
when ν = 1, so that,

δ = ρ− 1 + λn+1.
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On the other hand, it also follows from Lemma 4 that for ρ ≥ 1,

λn+1(3) <
2n+ 2

3
< n ≤ ρn.

Therefore x2n+2 ± 3nρ is divisible by exactly 3λn+1 which can only be true if

ρ− 1 + λn+1(3) ≤ λn+1(3).

It follows that ρ = 1 is the only possible value of ρ. In conclusion, if 2n = 3r− 1 ≥ 8,
then the polynomial g(x) admits one irreducible quadratic factor of the form x2 ± 3
and no other quadratic factor. In this case g(x) = (x2 ± 3)g1(x) where g1(x) is irre-
ducible over Q.

Part 5

Next, we investigate the case 2n = 26. It was stated that in this case, an irreducible
polynomial A(x) of degree 4 could be a factor of G(x), we will however show that no
such A(x) exists.
Let q be a prime factor of 2n− 3 = 23, then from (73) we know that

G(x) mod q = ±x26 + g12(2n+ 1)x24 + g11(2n+ 1)(2n− 1)x22.

Therefore, G(x) mod q is divisible by at least x22. In particular, since 2n − 3 = 23
is prime, G(x) mod 23 is divisible by at least x22. We suppose that a polynomial of
degree 4

A(x) = x4 + a1x
3 + a2x

2 + a3x+ a4

is an irreducible factor of G(x). We now wish to prove by contradiction that a1 = a3 =
0. Suppose a1 and a3 are not both equal to zero, then A(x) is a non-even factor of
the even polynomial G(x), meaning that A(−x) is a second factor of G(−x) = G(x).
This means that

G(x) = A(x)A(−x)C(x) (84)

where C(x) is some polynomial

C(x) = ±x18 + c1x
17 + . . .

and it follows that C(x) mod 23 is divisible by at most x18 (in the case c1, c2, . . . are
all divisible by 23), so

A(x)A(−x) = x8 + . . .+ a24

must be divisible mod 23 by at least x4 meaning that a24 must be divisible by 23.
(i.e. a4 must be divisible by 23 and therefore a24 must be divisible by 232) Since a24
is the constant term of A(x)A(−x), which is a factor of G(x), a24 must divide the
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constant term of G(x) where 2n = 26, which is u28. Since u28 is not divisible by
232, A(x)A(−x) cannot be a factor of G(x), in fact there cannot exist more than one
polynomial factor of degree 4 of G(x). It follows that A(x) is an even polynomial and
the only possible factor of G(x). If G(x) has a factor, it must therefore be of the form

A(x) = x4 + a2x
2 + a4.

Part 6

By letting x2 = y we can represent G(x) and A(x) as

K(y) = u28 + g1u28
y

u4
+ · · ·+ g12u28

y12

u26
± y13 (85)

and

D(y) = y2 + b1y + b2 (86)

and we suppose that D(y) is an irreducible quadratic factor of K(y). Since

u28
u26

= 27 (87)

it follows that

u28
u2ν+2

ν = 1, 2, . . . , 24 (88)

are all divisible by 3 and therefore

K(y) ≡ ±y13 mod 3. (89)

If D(y) were a factor of K(y), then b1 and b2 must therefore be divisible by 3.

Part 7
We will now show that b2 is not divisible by 9.

Suppose that b2 is divisible by 9. Then, if we let y = 3z,

D(3z) = 9E(z) = 9(z2 + c1z + c2)

where c1 and c2 are integers.
It follows from

λ2(3) = λ3(3) = λ4(3) = 1 (90)

that

u4, u6, u8
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are divisible by 3 and therefore

(3z)ν

u2ν+2

(91)

is divisible by 3ν−1 for ν = 1, 2, 3.
It follows from

λ5(3) = λ6(3) = λ7(3) = 3 (92)

that (91) is divisible by 3ν−3 for ν = 4, 5, 6.
It follows from

λ8(3) = λ9(3) = λ10(3) = 4 (93)

that (91) is divisible by 3ν−4 for ν = 7, 8, 9.
It follows from

λ11(3) = λ12(3) = λ13(3) = 5 (94)

that (91) is divisible by 3ν−5 for ν = 10, 11, 12.
It follows from

λ14(3) = 8 (95)

that (91) is divisible by 3ν−5 for ν = 13.
It follows from (95) that u28 is divisible by 38 and therefore

K(3z) = 38L(z)

and it follows from (90)-(95) that L(z) is of the form

L(z) = l0 + l1z + 3l2z
2 + 32l3z

3 + 3l4z
4 + 32l5z

5 + 33l6z
6

+ 33l7z
7 + 34l8z

8 + 35l9z
9 + 35l10z

10 + 36l11z
11 + 37l12z

12 ± 35z13 (96)

where lν are integers for all ν and l0 is not divisible by 3. Since K(y) is a factor of
D(y), we know that L(z) is a factor of E(z), i.e. there exists H(z) such that

L(z) = E(z)H(z).

We will now prove that H(z) is an integer polynomial. Suppose that H(z) is not an
integer polynomial, where

H(z) = h0 + h1z + · · ·+ h11z
11.

Then, at least one of hν is non-integer. Let ν∗ be the greatest ν for which hν is
non-integer, then

hν∗z
ν∗(E(z)) = hν∗z

ν∗(z2 + c1 + c2)

= hν∗z
ν∗+2 + hν∗c1z

ν∗+1 + hν∗c2z
ν∗

hν∗+1z
ν∗+1(E(z)) = hν∗+1z

ν∗+1(z2 + c1 + c2)

= hν∗+1z
ν∗+3 + hν∗+1c1z

ν∗+2 + hν∗+1c2z
ν∗+1

hν∗+2z
ν∗+2(E(z)) = hν∗+2z

ν∗+2(z2 + c1 + c2)

= hν∗+2z
ν∗+4 + hν∗+2c1z

ν∗+3 + hν∗+2c2z
ν∗+2
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so that

L(z) = E(z)H(z)

= · · ·+ (hν∗ + hν∗+1c1 + hν∗+2c2)z
ν∗+2 + · · · .

Since hν∗+1 and hν∗+2 are integers by choice of ν∗, the coefficient of zν∗+2 in L(z) must
be non-integer, contradicting the fact that L(z) is an integer polynomial. Therefore,
no such non-integer coefficient hν∗ can exist and H(z) must be an integer polynomial.
Since L(z), E(z) and H(z) are all integer polynomials, it must be true that

L(z) ≡ E(z)H(z) mod 3

but from (96) we know that L(z) mod 3 is a polynomial of degree at most 1, whilst
E(z) mod 3 is a polynomial of degree 2 so we have reached a contradiction and b2 is
therefore divisible by 3 but not by 9.

Part 8

Let β be a root of D(y) = 0. Then, it follows that

β(β − b1) = −b2

and therefore β divides b2 and, as we stated earlier 3 divides b2. Note that β is an
algebraic integer and Q(β) is an algebraic field extension of degree 2. From Ideal
Property 2, it follows that 〈β〉 and 〈3〉 are both divisible by 〈b2〉. We therefore know,
from Ideal Property 3, that there exists a prime ideal p which divides 〈β〉 and 〈3〉. Let
the highest power of p which divides 〈β〉 and 〈3〉, be pr and ps respectively. Clearly,
r ≥ 1 and s ≥ 1 but it also follows from Lemma 3 that s ≤ 2. Since pr divides β
exactly, then

β2 is divisible by exactly p2r. (97)

Since b2 is divisible by 3 exactly and 〈3〉 is divisible by ps exactly,

b2 is divisible by exactly ps. (98)

Finally, since b1 is divisible by at least 3,

b1β is divisible by at least pr+s. (99)

It follows from (98) and (99) that b1β + b2 is divisible by exactly ps. From D(β) = 0,
it follows that β2 must therefore be divisible by exactly ps, from (97) it follows that
s = 2r. Since

r ≥ 1, 1 ≤ s ≤ 2 (100)

it follows that

r = 1, s = 2. (101)
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Since r = 1, β13 is divisible by exactly p13.
From (90), we know that u4 is divisible by 3 and from (95), we know that u28 is
divisible by 38, therefore

g1u28
β

u4
(102)

is divisible by

38

3
β

and it follows from (101) that (102) is divisible by p15.

From (90), we know that u6 is divisible by 3 and from (95), we know that u28 is
divisible by 38, therefore

g2u28
β2

u6
(103)

is divisible by

38

3
β2

and it follows from (101) that (103) is divisible by p16.

From (90), we know that u8 is divisible by 3 and from (95), we know that u28 is
divisible by 38, therefore

g3u28
β3

u8
(104)

is divisible by

38

3
β3

and it follows from (101) that (104) is divisible by p17.

Similarly, from (92), we know that u10, u12, u14 are divisible by 33 and from (95), we
know that u28 is divisible by 38, therefore

g4u28
β4

u10
, g5u28

β5

u12
, g6u28

β6

u14
,

are divisible by p14, p15 and p16.
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From (93),

g7u28
β7

u16
, g8u28

β8

u18
, g9u28

β9

u20
,

are divisible by p15, p16, p17.

From (94),

g10u28
β10

u22
, g11u28

β11

u24
, g12u28

β12

u26

are divisible by p16, p17, p18.

Finally, we also know that u28 is divisible by p16.

If D(y) is a factor of K(y), then

K(β) = u28 + g1u28
β

u4
+ · · · ± β13 (105)

must vanish. We have just shown that every term of K(β) except β13 is divisible by
at least p14, while β13 is divisible by at most p13, meaning that K(β) cannot vanish
and therefore D(y) is not a factor of K(y). It follows then that D(x2) = A(x) is not
a factor of K(x2) = G(x) and G(x) must be irreducible over Z in this case.

In conclusion, g(x) is irreducible over Q in every case except for when 2n = 3r − 1,
then g(x) has an irreducible factor x2 ± 3.

8.3 Proof of Corollary 2

Corollary 2 (Corollary of Theorems 2 and 3).
The mth Hermite Polynomial

Hm(x) = (−1)me
x2

2 · d
me−

x2

2

dxm

is irreducible over Q for even m > 2 and irreducible after division by x for odd m.

Proof of Corollary 2.
The Hermite polynomials can be expressed as

Hm(x) =

[m2 ]∑
µ=0

(−1)µ
(
m

2µ

)
· u2ν · xm−2µ
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From this, we can find an expression for the even Hermite polynomials

H2n(x) =
n∑
µ=0

(−1)µ
(

2n

2µ

)
u2µ · x2n−2µ

=
n∑
µ=0

(−1)µ · (2n)!

(2µ)!(2(n− µ))!
· (2µ)!

2µµ!
· x2n−2µ

=
n∑
µ=0

(−1)µ · (2n)!

(2(n− µ))! · 2µµ!
· x2n−2µ

Let ν = n− µ, then

H2n(x) =
n∑
ν=0

(−1)n+ν · (2n)!

(2ν)! · 2n−ν(n− ν)!
· x2ν

=
n∑
ν=0

(−1)n+ν · 2nn! · u2n
2νν! · u2ν · 2n−ν(n− ν)!

· x2ν

=
n∑
ν=0

(−1)n+ν · n! · u2n
ν! · u2ν · (n− ν)!

· x2ν

=
n∑
ν=0

(−1)n+ν
(
n

ν

)
· u2n
u2ν
· x2ν (106)

Similarly, we can also find an expression for the odd Hermite polynomials:

H2n+1(x) =
n∑
ν=0

(−1)n+ν
(
n

ν

)
· u2n+2

u2ν+2

· x2ν+1 (107)

It follows from (106), that

H2n(x) = (−1)n · u2n · f(x)

where f(x) is a polynomial of the form

f(x) = 1 + g1
x2

u2
+ g2

x4

u4
+ · · ·+ gn−1

x2n−2

u2n−2
± x2n

u2n
.

It follows therefore, from Theorem 2 that H2n(x) are irreducible over Q for n > 1.
Similarly, it follows from (107), that

H2n+1(x) = (−1)n · u2n+2 · x · g(x)

where g(x) is a polynomial of the form

g(x) = 1 + g1
x2

u4
+ g2

x4

u6
+ · · ·+ gn−1

x2n−2

u2n
± x2n

u2n+2

.
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It follows therefore, from Theorem 3 that

H2n+1(x)

x

is irreducible over Q except for the case 2n+ 1 = 3r ≥ 9, for which there could exist
a factor of the form x2 ± 3. It is left to show that even in the case 2n + 1 = 3r ≥ 9,
the odd Hermite polynomials H2n+1(x) cannot admit a factor of the form x2 ± 3. It
follows trivially from the fact that Hermite polynomials only admit real roots, that
x2 + 3 cannot be a factor of H2n+1(x). In the case that 2n + 1 = 9, x2 − 3 is not a
factor as

H9(±
√

3) = (±
√

3)9 − 36(±
√

3)7 + 378(±
√

3)5 − 1260(±
√

3)3 + 945(±
√

3)

= (±81
√

3)− 36(±27
√

3) + 378(±9
√

3)− 1260(±3
√

3) + 945(±
√

3)

= ∓324
√

3

6= 0.

Suppose that 2n + 1 = 3r > 9, then, as we saw in Section 4 (Example 3), 2n, 2n + 1
cannot be {2, 3}-smooth, so there must exist a prime factor p ≥ 5 of 2n.
We can see from our expression for H2n+1(x)

H2n+1(x) =
n∑
µ=0

(−1)µ
(

2n+ 1

2µ

)
u2µ · x2n−2µ+1

that the coefficient of x2n+1−2µ is divisible by(
2n+ 1

2µ

)
· u2µ.

For 2µ ≥ p+ 1, u2µ will be divisible by p.
For 0 < 2µ ≤ p− 1,(

2n+ 1

2µ

)
=

(2n+ 1) · (2n) · · · (2n+ 1− 2µ)

1 · 2 · · · 2µ

will be divisible by p (as p divides 2n which appears in the numerator but p does
not appear in the denominator). Therefore, the coefficient of every term of H2n+1(x)
except x2n+1 is divisible by p ≥ 5 so that

H2n+1(x) ≡ x2n+1 mod p.

It follows that any factorisation of H2n+1(x) into two integer polynomials, results in
those two factors both having constant terms divisible by p ≥ 5. As a result, x2 − 3
cannot be a factor of H2n+1(x).
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9 A Modern Look At The Distribution Of Prime

Numbers

Having been introduced to the distribution of prime numbers in Section 2, I felt it was
important to revisit this subject as there have been many advances in our understand-
ing of this subject since 1929. In this section, I present some better approximations
found after Schur wrote his papers. I also talk about how one can use Maple to in-
vestigate the distribution of prime numbers and I present a method for finding more
intervals containing prime numbers, inspired by Schur’s proof of Lemma 1.

9.1 New Approximations

New Approximation 1 (Rosser and Schoenfeld [11]).

π(x) < 1.25506
x

log x

for x > 1.

New Approximation 2 (Dusart [3]).

ϑ(x) < x+ 151.3
x

log4(x)

ϑ(x) > x− 151.3
x

log4(x)

for x ≥ 2.

New Approximation 3 (Dusart [3]).

ψ(x) < x+ 59.18
x

log4(x)

ψ(x) > x− 59.18
x

log4(x)

for x ≥ 2.

9.2 Using Maple

With the use of the computer programming software Maple, it is very easy to find
exact values for all of the functions defined in Section 2.1 using the Number Theory
package. Below, you can find the relevant code for each function:

For the prime counting function π(x), simply use

pi(x);
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For the prime gaps function ∆p, first define

delta(i):=ithprime(i+1)-ithprime(i);

then in order to find ∆p for some p ∈ P, type

delta(pi(p));

For the function L(x), having defined delta(i) as above, define a sequence

m:=seq(delta(i),i=1..pi(p));

for a chosen p ∈ P. This will give all prime gaps up to p, then in order to find the
maximum prime gap up to p, type

M:=max(m);

The value of L(p) is just one less than M . If instead you wish to find L(x) for some
x ∈ N, then simply find L(p1) and L(p2) where p1 and p2 are consecutive primes
either side of x, they are easily found using

p1:=prevprime(x);

p2:=nextprime(x);

If L(p1) = L(p2) then they are equal to L(x), otherwise L(x) is the larger of L(p1)
and x− p1.

For the first Chebyshev function ϑ(x) use

vartheta:=x->sum(ln(ithprime(i)),i=1..pi(x)):

For the second Chebyshev function ψ(x), use

varpsi:=x->sum((floor(log[ithprime(i)](x)))*ln(ithprime(i)),i=1..pi(x)):

9.2.1 Using Maple to find Prime Gaps

In Section 2.2, we saw some approximations for the prime gaps function ∆p and
the function L(x) giving the length of the longest sequence of consecutive numbers,
or equivalently, if we define M(x) to be the maximum prime gap up to x, then

66



Figure 1: Graph showing ∆p for all prime numbers p ≤ 300000

L(x) = M(x)− 1. Using Maple, I plotted all prime gaps for x ≤ 300000.

In Approximation 4, we saw that Schur approximated that ∆p < 1000 for p < 162754,
this is equivalent to saying that the maximum prime gap for p < 16275 is less than
1000. Using Maple, I find that the actual maximum prime gap for p < 16275 is 44.
Similarly, I find that

M(4000) = 34

M(400) = 14

Note that, M(400) = 14 agrees with Approximation 4.

In Approximation 5, we saw that Schur gave upper bounds for L(x). Using Maple I
can find the exact value of L(x), they are as follows

L(300000) = 85

L(100000) = 71

L(50000) = 71

L(5000) = 33

I conclude this section by presenting some graphs that compare approximations of
the prime counting function and Chebyshev functions with their actual values up to
1000.
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Figure 2: Graph comparing two different upper bounds for π(x) with the actual values
of π(x).

Figure 3: Graph comparing Landau’s upper and lower bounds for ϑ(x) with the actual
values of ϑ(x).
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Figure 4: Graph comparing Landau’s upper and lower bounds for ψ(x) with the
actual values of ψ(x).

Figure 5: Graph comparing Dusart’s upper and lower bounds for ϑ(x) with the actual
values of ϑ(x).
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Figure 6: Graph comparing Dusart’s upper and lower bounds for ψ(x) with the actual
values of ψ(x).
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9.3 Revisiting the Problem of Finding Intervals Containing
Primes

Schur’s proof of Lemma 1 involved using Approximation 1 to show that ϑ(5x
4

)−ϑ(x) >
0 for x > e12 and then verifying that there exists a prime number in every interval
x < p ≤ 5

4
x for 29 ≤ x ≤ e12.

In 1952 it was proven (see [9]) that there always exists a prime number in the interval
x < p ≤ 6x

5
for x ≥ 25. Nagura’s proof used upper and lower bounds of ψ(x) to show

that ϑ(6x
5

)−ϑ(x) > 0 for x ≥ 2103 and then verified that there exists a prime number
in every interval x < p ≤ 6

5
for 25 ≤ x < 2103.

This led me to thinking about other intervals of the form

x < p ≤ n+ 1

n
x. (108)

It follows from the Prime Number Theorem that for all n, there must exist an X
such that for all x > X, the interval (108) contains a prime number. Using Dusart’s
approximations for ϑ(x), I have found a method for finding such an X.

Theorem 4.
For some n ≥ 1, there exists a prime number in the interval

x < p ≤ n+ 1

n
· x

for x ≥ X, where

X = e
4
√

151.3·(2n+1).

Proof of Theorem 4.
Using the new approximations for the first Chebyshev function, found by Dusart in
[3], we can find a lower bound for ϑ(n+1

n
x)− ϑ(x).

ϑ

(
n+ 1

n
x

)
− ϑ(x) >

x

n
− n+ 1

n
· 151.3 · x

log4(n+1
n
· x)
− 151.3 · x

log4(x)

for x ≥ 2.
We also know that

1

log4(n+1
n
· x)

<
1

log4(x)
(109)

for x ≥ 2.
Therefore,

ϑ

(
n+ 1

n
x

)
− ϑ(x) >

x

n
− n+ 1

n
· 151.3 · x

log4(x)
− 151.3 · x

log4(x)

=
x

n
− (2n+ 1) · 151.3 · x

n log4(x)

=
x

n

(
1− 151.3 · (2n+ 1)

log4(x)

)
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It follows that for some n ≥ 1, if

log4(x) ≥ 151.3 · (2n+ 1),

then ϑ(n+1
n
x)− ϑ(x) > 0.

From Theorem 4, it follows that for:

n = 6 there exists a prime number p in the interval (108) for x ≥ e
4√1966.9 = 780.207 . . .

n = 7 there exists a prime number p in the interval (108) for x ≥ e
4√2269.5 = 994.381 . . .

n = 8 there exists a prime number p in the interval (108) for x ≥ e
4√2572.1 = 1238.316 . . .

n = 9 there exists a prime number p in the interval (108) for x ≥ e
4√2874.7 = 1513.697 . . .

Using Maple, I can verify that there exists a prime in every interval 108 for small x.
It therefore follows that there exists a prime number p in the following intervals:

x < p ≤ 7

6
x ∀x ≥ 32

x < p ≤ 8

7
x ∀x ≥ 33

x < p ≤ 9

8
x ∀x ≥ 48

x < p ≤ 10

9
x ∀x ≥ 115
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